MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgval Structured version   Visualization version   GIF version

Theorem hashgval 13235
Description: The value of the function in terms of the mapping 𝐺 from ω to 0. The proof avoids the use of ax-ac 9394. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypothesis
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
hashgval (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hashgval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resundir 5521 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin))
2 eqid 2724 . . . . . . . . . 10 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
3 eqid 2724 . . . . . . . . . 10 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
42, 3hashkf 13234 . . . . . . . . 9 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
5 ffn 6158 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin)
6 fnresdm 6113 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) Fn Fin → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card))
74, 5, 6mp2b 10 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
8 incom 3913 . . . . . . . . . 10 ((V ∖ Fin) ∩ Fin) = (Fin ∩ (V ∖ Fin))
9 disjdif 4148 . . . . . . . . . 10 (Fin ∩ (V ∖ Fin)) = ∅
108, 9eqtri 2746 . . . . . . . . 9 ((V ∖ Fin) ∩ Fin) = ∅
11 pnfex 10206 . . . . . . . . . . 11 +∞ ∈ V
1211fconst 6204 . . . . . . . . . 10 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
13 ffn 6158 . . . . . . . . . 10 (((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V ∖ Fin) × {+∞}) Fn (V ∖ Fin))
14 fnresdisj 6114 . . . . . . . . . 10 (((V ∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅))
1512, 13, 14mp2b 10 . . . . . . . . 9 (((V ∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅)
1610, 15mpbi 220 . . . . . . . 8 (((V ∖ Fin) × {+∞}) ↾ Fin) = ∅
177, 16uneq12i 3873 . . . . . . 7 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin)) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ∅)
18 un0 4075 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
1917, 18eqtri 2746 . . . . . 6 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) × {+∞}) ↾ Fin)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
201, 19eqtri 2746 . . . . 5 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
21 df-hash 13233 . . . . . 6 ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
2221reseq1i 5499 . . . . 5 (♯ ↾ Fin) = ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ↾ Fin)
23 hashgval.1 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2423coeq1i 5389 . . . . 5 (𝐺 ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
2520, 22, 243eqtr4i 2756 . . . 4 (♯ ↾ Fin) = (𝐺 ∘ card)
2625fveq1i 6305 . . 3 ((♯ ↾ Fin)‘𝐴) = ((𝐺 ∘ card)‘𝐴)
27 cardf2 8882 . . . . 5 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
28 ffun 6161 . . . . 5 (card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On → Fun card)
2927, 28ax-mp 5 . . . 4 Fun card
30 finnum 8887 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
31 fvco 6388 . . . 4 ((Fun card ∧ 𝐴 ∈ dom card) → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴)))
3229, 30, 31sylancr 698 . . 3 (𝐴 ∈ Fin → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴)))
3326, 32syl5eq 2770 . 2 (𝐴 ∈ Fin → ((♯ ↾ Fin)‘𝐴) = (𝐺‘(card‘𝐴)))
34 fvres 6320 . 2 (𝐴 ∈ Fin → ((♯ ↾ Fin)‘𝐴) = (♯‘𝐴))
3533, 34eqtr3d 2760 1 (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1596  wcel 2103  {cab 2710  wrex 3015  Vcvv 3304  cdif 3677  cun 3678  cin 3679  c0 4023  {csn 4285   class class class wbr 4760  cmpt 4837   × cxp 5216  dom cdm 5218  cres 5220  ccom 5222  Oncon0 5836  Fun wfun 5995   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  ωcom 7182  reccrdg 7625  cen 8069  Fincfn 8072  cardccrd 8874  0cc0 10049  1c1 10050   + caddc 10052  +∞cpnf 10184  0cn0 11405  chash 13232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-hash 13233
This theorem is referenced by:  hashginv  13236  hashfz1  13249  hashen  13250  hashcard  13259  hashcl  13260  hashgval2  13280  hashdom  13281  hashun  13284  fz1isolem  13358
  Copyright terms: Public domain W3C validator