MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Visualization version   GIF version

Theorem hashgt12el 13412
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 13360 . . . 4 (♯‘∅) = 0
2 fveq2 6332 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2syl5eqr 2819 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 4790 . . . . . . . 8 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 219 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2779 . . . . . 6 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 10753 . . . . . . 7 0 ≤ 1
8 0re 10242 . . . . . . . . 9 0 ∈ ℝ
9 1re 10241 . . . . . . . . 9 1 ∈ ℝ
108, 9lenlti 10359 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 121 . . . . . . . 8 (¬ 1 < 0 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1210, 11sylbi 207 . . . . . . 7 (0 ≤ 1 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
137, 12ax-mp 5 . . . . . 6 (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
146, 13syl6com 37 . . . . 5 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1514adantl 467 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1615com12 32 . . 3 (0 = (♯‘𝑉) → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
173, 16syl 17 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
18 df-ne 2944 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
19 necom 2996 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
2018, 19bitr3i 266 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
21 ralnex 3141 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
22 ralnex 3141 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ¬ ∃𝑏𝑉 𝑎𝑏)
23 nne 2947 . . . . . . . . . . . 12 𝑎𝑏𝑎 = 𝑏)
24 equcom 2103 . . . . . . . . . . . 12 (𝑎 = 𝑏𝑏 = 𝑎)
2523, 24bitri 264 . . . . . . . . . . 11 𝑎𝑏𝑏 = 𝑎)
2625ralbii 3129 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2722, 26bitr3i 266 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2827ralbii 3129 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
2921, 28bitr3i 266 . . . . . . 7 (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
30 eqsn 4495 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3130adantl 467 . . . . . . . . . . 11 ((𝑉𝑊𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3231bicomd 213 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝑎𝑉 = {𝑎}))
3332ralbidv 3135 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 ↔ ∀𝑎𝑉 𝑉 = {𝑎}))
34 fveq2 6332 . . . . . . . . . . . . 13 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
35 hashsnle1 13407 . . . . . . . . . . . . 13 (♯‘{𝑎}) ≤ 1
3634, 35syl6eqbr 4825 . . . . . . . . . . . 12 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)
3736a1i 11 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
3837reximdva0 4080 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → ∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
39 r19.36v 3233 . . . . . . . . . 10 (∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4038, 39syl 17 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4133, 40sylbid 230 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1))
42 hashxrcl 13350 . . . . . . . . . 10 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
4342adantr 466 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
449rexri 10299 . . . . . . . . 9 1 ∈ ℝ*
45 xrlenlt 10305 . . . . . . . . 9 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4643, 44, 45sylancl 574 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4741, 46sylibd 229 . . . . . . 7 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉)))
4829, 47syl5bi 232 . . . . . 6 ((𝑉𝑊𝑉 ≠ ∅) → (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 → ¬ 1 < (♯‘𝑉)))
4948con4d 115 . . . . 5 ((𝑉𝑊𝑉 ≠ ∅) → (1 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5049impancom 439 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5150com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5220, 51sylbi 207 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5317, 52pm2.61i 176 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  c0 4063  {csn 4316   class class class wbr 4786  cfv 6031  0cc0 10138  1c1 10139  *cxr 10275   < clt 10276  cle 10277  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-hash 13322
This theorem is referenced by:  ring1ne0  18799  frgrwopreglem5  27503  frgrwopreglem5ALT  27504
  Copyright terms: Public domain W3C validator