MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge3el3dif Structured version   Visualization version   GIF version

Theorem hashge3el3dif 13381
Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 13375, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
hashge3el3dif ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem hashge3el3dif
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0nep0 4941 . . . . . . . . 9 ∅ ≠ {∅}
2 0ex 4898 . . . . . . . . . . . 12 ∅ ∈ V
32sneqr 4479 . . . . . . . . . . 11 ({∅} = {{∅}} → ∅ = {∅})
43necon3i 2928 . . . . . . . . . 10 (∅ ≠ {∅} → {∅} ≠ {{∅}})
51, 4ax-mp 5 . . . . . . . . 9 {∅} ≠ {{∅}}
6 snex 5013 . . . . . . . . . 10 {∅} ∈ V
7 snnzg 4414 . . . . . . . . . 10 ({∅} ∈ V → {{∅}} ≠ ∅)
86, 7ax-mp 5 . . . . . . . . 9 {{∅}} ≠ ∅
91, 5, 83pm3.2i 1376 . . . . . . . 8 (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅)
10 snex 5013 . . . . . . . . . 10 {{∅}} ∈ V
112, 6, 103pm3.2i 1376 . . . . . . . . 9 (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)
12 hashtpg 13380 . . . . . . . . 9 ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3))
1311, 12ax-mp 5 . . . . . . . 8 ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (♯‘{∅, {∅}, {{∅}}}) = 3)
149, 13mpbi 220 . . . . . . 7 (♯‘{∅, {∅}, {{∅}}}) = 3
1514eqcomi 2733 . . . . . 6 3 = (♯‘{∅, {∅}, {{∅}}})
1615a1i 11 . . . . 5 (𝐷𝑉 → 3 = (♯‘{∅, {∅}, {{∅}}}))
1716breq1d 4770 . . . 4 (𝐷𝑉 → (3 ≤ (♯‘𝐷) ↔ (♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷)))
18 tpfi 8352 . . . . 5 {∅, {∅}, {{∅}}} ∈ Fin
19 hashdom 13281 . . . . 5 (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷𝑉) → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2018, 19mpan 708 . . . 4 (𝐷𝑉 → ((♯‘{∅, {∅}, {{∅}}}) ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2117, 20bitrd 268 . . 3 (𝐷𝑉 → (3 ≤ (♯‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
22 brdomg 8082 . . . 4 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷))
2311a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V))
247necomd 2951 . . . . . . . . . . 11 ({∅} ∈ V → ∅ ≠ {{∅}})
256, 24ax-mp 5 . . . . . . . . . 10 ∅ ≠ {{∅}}
261, 25, 53pm3.2i 1376 . . . . . . . . 9 (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})
2726a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}))
28 simpr 479 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷)
2923, 27, 28f1dom3el3dif 6641 . . . . . . 7 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
3029expcom 450 . . . . . 6 (𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3130exlimiv 1971 . . . . 5 (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3231com12 32 . . . 4 (𝐷𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3322, 32sylbid 230 . . 3 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3421, 33sylbid 230 . 2 (𝐷𝑉 → (3 ≤ (♯‘𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3534imp 444 1 ((𝐷𝑉 ∧ 3 ≤ (♯‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wex 1817  wcel 2103  wne 2896  wrex 3015  Vcvv 3304  c0 4023  {csn 4285  {ctp 4289   class class class wbr 4760  1-1wf1 5998  cfv 6001  cdom 8070  Fincfn 8072  cle 10188  3c3 11184  chash 13232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-fz 12441  df-hash 13233
This theorem is referenced by:  pmtr3ncom  18016
  Copyright terms: Public domain W3C validator