![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfzp1 | Structured version Visualization version GIF version |
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
hashfzp1 | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash0 13342 | . . . 4 ⊢ (♯‘∅) = 0 | |
2 | eluzelre 11882 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
3 | 2 | ltp1d 11138 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) |
4 | eluzelz 11881 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
5 | peano2z 11602 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
6 | 5 | ancri 576 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
7 | fzn 12542 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | |
8 | 4, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
9 | 3, 8 | mpbid 222 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) |
10 | 9 | fveq2d 6348 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅)) |
11 | 4 | zcnd 11667 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
12 | 11 | subidd 10564 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) |
13 | 1, 10, 12 | 3eqtr4a 2812 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) |
14 | oveq1 6812 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) | |
15 | 14 | oveq1d 6820 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵)) |
16 | 15 | fveq2d 6348 | . . . 4 ⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) |
17 | oveq2 6813 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
18 | 16, 17 | eqeq12d 2767 | . . 3 ⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) |
19 | 13, 18 | syl5ibr 236 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
20 | uzp1 11906 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
21 | pm2.24 121 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
22 | 21 | eqcoms 2760 | . . . . . . . 8 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
23 | ax-1 6 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
24 | 22, 23 | jaoi 393 | . . . . . . 7 ⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
25 | 20, 24 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
26 | 25 | impcom 445 | . . . . 5 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) |
27 | hashfz 13398 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
29 | eluzel2 11876 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
30 | 29 | zcnd 11667 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
31 | 1cnd 10240 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
32 | 11, 30, 31 | nppcan2d 10602 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
33 | 32 | adantl 473 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
34 | 28, 33 | eqtrd 2786 | . . 3 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
35 | 34 | ex 449 | . 2 ⊢ (¬ 𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
36 | 19, 35 | pm2.61i 176 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∅c0 4050 class class class wbr 4796 ‘cfv 6041 (class class class)co 6805 0cc0 10120 1c1 10121 + caddc 10123 < clt 10258 − cmin 10450 ℤcz 11561 ℤ≥cuz 11871 ...cfz 12511 ♯chash 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-hash 13304 |
This theorem is referenced by: 2lgslem1 25310 |
Copyright terms: Public domain | W3C validator |