MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzp1 Structured version   Visualization version   GIF version

Theorem hashfzp1 13402
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzp1
StepHypRef Expression
1 hash0 13342 . . . 4 (♯‘∅) = 0
2 eluzelre 11882 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
32ltp1d 11138 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 < (𝐵 + 1))
4 eluzelz 11881 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
5 peano2z 11602 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
65ancri 576 . . . . . . 7 (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ))
7 fzn 12542 . . . . . . 7 (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
84, 6, 73syl 18 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
93, 8mpbid 222 . . . . 5 (𝐵 ∈ (ℤ𝐴) → ((𝐵 + 1)...𝐵) = ∅)
109fveq2d 6348 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅))
114zcnd 11667 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1211subidd 10564 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐵) = 0)
131, 10, 123eqtr4a 2812 . . 3 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵))
14 oveq1 6812 . . . . . 6 (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1))
1514oveq1d 6820 . . . . 5 (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵))
1615fveq2d 6348 . . . 4 (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵)))
17 oveq2 6813 . . . 4 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1816, 17eqeq12d 2767 . . 3 (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵)))
1913, 18syl5ibr 236 . 2 (𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
20 uzp1 11906 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))))
21 pm2.24 121 . . . . . . . . 9 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2221eqcoms 2760 . . . . . . . 8 (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
23 ax-1 6 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2422, 23jaoi 393 . . . . . . 7 ((𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2520, 24syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2625impcom 445 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ‘(𝐴 + 1)))
27 hashfz 13398 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
2826, 27syl 17 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
29 eluzel2 11876 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
3029zcnd 11667 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
31 1cnd 10240 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
3211, 30, 31nppcan2d 10602 . . . . 5 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3332adantl 473 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3428, 33eqtrd 2786 . . 3 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
3534ex 449 . 2 𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
3619, 35pm2.61i 176 1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  c0 4050   class class class wbr 4796  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121   + caddc 10123   < clt 10258  cmin 10450  cz 11561  cuz 11871  ...cfz 12511  chash 13303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-hash 13304
This theorem is referenced by:  2lgslem1  25310
  Copyright terms: Public domain W3C validator