![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfzo | Structured version Visualization version GIF version |
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
hashfzo | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 11884 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 11675 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
3 | 2 | subidd 10572 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 − 𝐴) = 0) |
4 | fzo0 12686 | . . . . . 6 ⊢ (𝐴..^𝐴) = ∅ | |
5 | 4 | fveq2i 6355 | . . . . 5 ⊢ (♯‘(𝐴..^𝐴)) = (♯‘∅) |
6 | hash0 13350 | . . . . 5 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | eqtri 2782 | . . . 4 ⊢ (♯‘(𝐴..^𝐴)) = 0 |
8 | 3, 7 | syl6reqr 2813 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴)) |
9 | oveq2 6821 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴)) | |
10 | 9 | fveq2d 6356 | . . . 4 ⊢ (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴))) |
11 | oveq1 6820 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐵 − 𝐴) = (𝐴 − 𝐴)) | |
12 | 10, 11 | eqeq12d 2775 | . . 3 ⊢ (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴))) |
13 | 8, 12 | syl5ibrcom 237 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
14 | eluzelz 11889 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
15 | fzoval 12665 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
17 | 16 | fveq2d 6356 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
18 | 17 | adantr 472 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
19 | hashfz 13406 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1)) | |
20 | 14 | zcnd 11675 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
21 | 1cnd 10248 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
22 | 20, 21, 2 | sub32d 10616 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵 − 𝐴) − 1)) |
23 | 22 | oveq1d 6828 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵 − 𝐴) − 1) + 1)) |
24 | 20, 2 | subcld 10584 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
25 | ax-1cn 10186 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
26 | npcan 10482 | . . . . . . 7 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) | |
27 | 24, 25, 26 | sylancl 697 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) |
28 | 23, 27 | eqtrd 2794 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵 − 𝐴)) |
29 | 19, 28 | sylan9eqr 2816 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵 − 𝐴)) |
30 | 18, 29 | eqtrd 2794 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
31 | 30 | ex 449 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
32 | uzm1 11911 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ≥‘𝐴))) | |
33 | 13, 31, 32 | mpjaod 395 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∅c0 4058 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 0cc0 10128 1c1 10129 + caddc 10131 − cmin 10458 ℤcz 11569 ℤ≥cuz 11879 ...cfz 12519 ..^cfzo 12659 ♯chash 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 |
This theorem is referenced by: hashfzo0 13409 pntlemr 25490 circlemethhgt 31030 |
Copyright terms: Public domain | W3C validator |