![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashfz | Structured version Visualization version GIF version |
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
Ref | Expression |
---|---|
hashfz | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 11905 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
2 | eluzelz 11910 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
3 | 1z 11620 | . . . . . 6 ⊢ 1 ∈ ℤ | |
4 | zsubcl 11632 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 698 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 − 𝐴) ∈ ℤ) |
6 | fzen 12572 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) | |
7 | 1, 2, 5, 6 | syl3anc 1477 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴)))) |
8 | 1 | zcnd 11696 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
9 | ax-1cn 10207 | . . . . . 6 ⊢ 1 ∈ ℂ | |
10 | pncan3 10502 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1) | |
11 | 8, 9, 10 | sylancl 697 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 + (1 − 𝐴)) = 1) |
12 | 2 | zcnd 11696 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
13 | 1cnd 10269 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
14 | 12, 13, 8 | addsub12d 10628 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵 − 𝐴))) |
15 | 12, 8 | subcld 10605 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
16 | addcom 10435 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐵 − 𝐴) ∈ ℂ) → (1 + (𝐵 − 𝐴)) = ((𝐵 − 𝐴) + 1)) | |
17 | 9, 15, 16 | sylancr 698 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (1 + (𝐵 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
18 | 14, 17 | eqtrd 2795 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵 − 𝐴) + 1)) |
19 | 11, 18 | oveq12d 6833 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵 − 𝐴) + 1))) |
20 | 7, 19 | breqtrd 4831 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1))) |
21 | hasheni 13351 | . . 3 ⊢ ((𝐴...𝐵) ≈ (1...((𝐵 − 𝐴) + 1)) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1)))) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵 − 𝐴) + 1)))) |
23 | uznn0sub 11933 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℕ0) | |
24 | peano2nn0 11546 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℕ0 → ((𝐵 − 𝐴) + 1) ∈ ℕ0) | |
25 | hashfz1 13349 | . . 3 ⊢ (((𝐵 − 𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) | |
26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(1...((𝐵 − 𝐴) + 1))) = ((𝐵 − 𝐴) + 1)) |
27 | 22, 26 | eqtrd 2795 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 ≈ cen 8121 ℂcc 10147 1c1 10150 + caddc 10152 − cmin 10479 ℕ0cn0 11505 ℤcz 11590 ℤ≥cuz 11900 ...cfz 12540 ♯chash 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-hash 13333 |
This theorem is referenced by: fzsdom2 13428 hashfzo 13429 hashfzp1 13431 hashfz0 13432 0sgmppw 25144 logfaclbnd 25168 gausslemma2dlem5 25317 ballotlem2 30881 subfacp1lem5 31495 fzisoeu 40032 stoweidlem11 40750 stoweidlem26 40765 |
Copyright terms: Public domain | W3C validator |