Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashf2 Structured version   Visualization version   GIF version

Theorem hashf2 30486
Description: Lemma for hasheuni 30487. (Contributed by Thierry Arnoux, 19-Nov-2016.)
Assertion
Ref Expression
hashf2 ♯:V⟶(0[,]+∞)

Proof of Theorem hashf2
StepHypRef Expression
1 hashf 13329 . 2 ♯:V⟶(ℕ0 ∪ {+∞})
2 nn0z 11602 . . . . . 6 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3 zre 11583 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
4 rexr 10287 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
52, 3, 43syl 18 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℝ*)
6 nn0ge0 11520 . . . . 5 (𝑥 ∈ ℕ0 → 0 ≤ 𝑥)
7 elxrge0 12488 . . . . 5 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
85, 6, 7sylanbrc 572 . . . 4 (𝑥 ∈ ℕ0𝑥 ∈ (0[,]+∞))
98ssriv 3756 . . 3 0 ⊆ (0[,]+∞)
10 0xr 10288 . . . . 5 0 ∈ ℝ*
11 pnfxr 10294 . . . . 5 +∞ ∈ ℝ*
12 0lepnf 12171 . . . . 5 0 ≤ +∞
13 ubicc2 12496 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
1410, 11, 12, 13mp3an 1572 . . . 4 +∞ ∈ (0[,]+∞)
15 snssi 4474 . . . 4 (+∞ ∈ (0[,]+∞) → {+∞} ⊆ (0[,]+∞))
1614, 15ax-mp 5 . . 3 {+∞} ⊆ (0[,]+∞)
179, 16unssi 3939 . 2 (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)
18 fss 6196 . 2 ((♯:V⟶(ℕ0 ∪ {+∞}) ∧ (ℕ0 ∪ {+∞}) ⊆ (0[,]+∞)) → ♯:V⟶(0[,]+∞))
191, 17, 18mp2an 672 1 ♯:V⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  Vcvv 3351  cun 3721  wss 3723  {csn 4316   class class class wbr 4786  wf 6027  (class class class)co 6793  cr 10137  0cc0 10138  +∞cpnf 10273  *cxr 10275  cle 10277  0cn0 11494  cz 11579  [,]cicc 12383  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-icc 12387  df-hash 13322
This theorem is referenced by:  hasheuni  30487  cntmeas  30629
  Copyright terms: Public domain W3C validator