![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hasheni | Structured version Visualization version GIF version |
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.) |
Ref | Expression |
---|---|
hasheni | ⊢ (𝐴 ≈ 𝐵 → (♯‘𝐴) = (♯‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ≈ 𝐵) | |
2 | enfii 8333 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | |
3 | 2 | ancoms 455 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
4 | hashen 13339 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
5 | 3, 4 | sylancom 576 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
6 | 1, 5 | mpbird 247 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵)) |
7 | relen 8114 | . . . . . 6 ⊢ Rel ≈ | |
8 | 7 | brrelexi 5298 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin) → 𝐴 ∈ V) |
10 | enfi 8332 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
11 | 10 | notbid 307 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin)) |
12 | 11 | biimpar 463 | . . . 4 ⊢ ((𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
13 | hashinf 13326 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
14 | 9, 12, 13 | syl2anc 573 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = +∞) |
15 | 7 | brrelex2i 5299 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
16 | hashinf 13326 | . . . 4 ⊢ ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞) | |
17 | 15, 16 | sylan 569 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞) |
18 | 14, 17 | eqtr4d 2808 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵)) |
19 | 6, 18 | pm2.61dan 814 | 1 ⊢ (𝐴 ≈ 𝐵 → (♯‘𝐴) = (♯‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 class class class wbr 4786 ‘cfv 6031 ≈ cen 8106 Fincfn 8109 +∞cpnf 10273 ♯chash 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-hash 13322 |
This theorem is referenced by: hashen1 13362 hashfn 13366 hashfz 13416 hashf1lem2 13442 ishashinf 13449 hashgcdeq 15701 ramub2 15925 ram0 15933 odhash 18196 odhash2 18197 odngen 18199 lsmhash 18325 znhash 20122 znunithash 20128 cyggic 20136 birthdaylem2 24900 0sgmppw 25144 logfac2 25163 lgsquadlem1 25326 lgsquadlem2 25327 lgsquadlem3 25328 wlknwwlksneqs 27029 numclwwlk1 27548 eulerpart 30784 ballotlemro 30924 ballotlemfrc 30928 ballotlem8 30938 rp-isfinite5 38389 |
Copyright terms: Public domain | W3C validator |