![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashen1 | Structured version Visualization version GIF version |
Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
hashen1 | ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = 1 ↔ 𝐴 ≈ 1𝑜)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4823 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | hashsng 13197 | . . . . . 6 ⊢ (∅ ∈ V → (#‘{∅}) = 1) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (#‘{∅}) = 1 |
4 | 3 | eqcomi 2660 | . . . 4 ⊢ 1 = (#‘{∅}) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 1 = (#‘{∅})) |
6 | 5 | eqeq2d 2661 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = 1 ↔ (#‘𝐴) = (#‘{∅}))) |
7 | simpr 476 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (#‘𝐴) = (#‘{∅})) → (#‘𝐴) = (#‘{∅})) | |
8 | 1nn0 11346 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
9 | 3, 8 | eqeltri 2726 | . . . . . . . 8 ⊢ (#‘{∅}) ∈ ℕ0 |
10 | hashvnfin 13189 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (#‘{∅}) ∈ ℕ0) → ((#‘𝐴) = (#‘{∅}) → 𝐴 ∈ Fin)) | |
11 | 9, 10 | mpan2 707 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = (#‘{∅}) → 𝐴 ∈ Fin)) |
12 | 11 | imp 444 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ (#‘𝐴) = (#‘{∅})) → 𝐴 ∈ Fin) |
13 | snfi 8079 | . . . . . 6 ⊢ {∅} ∈ Fin | |
14 | hashen 13175 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ {∅} ∈ Fin) → ((#‘𝐴) = (#‘{∅}) ↔ 𝐴 ≈ {∅})) | |
15 | 12, 13, 14 | sylancl 695 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ (#‘𝐴) = (#‘{∅})) → ((#‘𝐴) = (#‘{∅}) ↔ 𝐴 ≈ {∅})) |
16 | 7, 15 | mpbid 222 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (#‘𝐴) = (#‘{∅})) → 𝐴 ≈ {∅}) |
17 | 16 | ex 449 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = (#‘{∅}) → 𝐴 ≈ {∅})) |
18 | hasheni 13176 | . . 3 ⊢ (𝐴 ≈ {∅} → (#‘𝐴) = (#‘{∅})) | |
19 | 17, 18 | impbid1 215 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = (#‘{∅}) ↔ 𝐴 ≈ {∅})) |
20 | df1o2 7617 | . . . . 5 ⊢ 1𝑜 = {∅} | |
21 | 20 | eqcomi 2660 | . . . 4 ⊢ {∅} = 1𝑜 |
22 | 21 | breq2i 4693 | . . 3 ⊢ (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1𝑜) |
23 | 22 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≈ {∅} ↔ 𝐴 ≈ 1𝑜)) |
24 | 6, 19, 23 | 3bitrd 294 | 1 ⊢ (𝐴 ∈ 𝑉 → ((#‘𝐴) = 1 ↔ 𝐴 ≈ 1𝑜)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 {csn 4210 class class class wbr 4685 ‘cfv 5926 1𝑜c1o 7598 ≈ cen 7994 Fincfn 7997 1c1 9975 ℕ0cn0 11330 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: euhash1 13246 0ring 19318 0ring01eqbi 19321 |
Copyright terms: Public domain | W3C validator |