MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdmpropge2 Structured version   Visualization version   GIF version

Theorem hashdmpropge2 13303
Description: The size of the domain of a class which contains two ordered pairs with different first componens is greater than or mequal to 2. (Contributed by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
hashdmpropge2.a (𝜑𝐴𝑉)
hashdmpropge2.b (𝜑𝐵𝑊)
hashdmpropge2.c (𝜑𝐶𝑋)
hashdmpropge2.d (𝜑𝐷𝑌)
hashdmpropge2.f (𝜑𝐹𝑍)
hashdmpropge2.n (𝜑𝐴𝐵)
hashdmpropge2.s (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹)
Assertion
Ref Expression
hashdmpropge2 (𝜑 → 2 ≤ (#‘dom 𝐹))

Proof of Theorem hashdmpropge2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashdmpropge2.f . . 3 (𝜑𝐹𝑍)
2 dmexg 7139 . . 3 (𝐹𝑍 → dom 𝐹 ∈ V)
31, 2syl 17 . 2 (𝜑 → dom 𝐹 ∈ V)
4 hashdmpropge2.c . . . . 5 (𝜑𝐶𝑋)
5 hashdmpropge2.d . . . . 5 (𝜑𝐷𝑌)
6 dmpropg 5644 . . . . 5 ((𝐶𝑋𝐷𝑌) → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})
74, 5, 6syl2anc 694 . . . 4 (𝜑 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐴, 𝐵})
8 hashdmpropge2.s . . . . 5 (𝜑 → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹)
9 dmss 5355 . . . . 5 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ 𝐹 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ dom 𝐹)
108, 9syl 17 . . . 4 (𝜑 → dom {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ⊆ dom 𝐹)
117, 10eqsstr3d 3673 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐹)
12 hashdmpropge2.a . . . . 5 (𝜑𝐴𝑉)
13 hashdmpropge2.b . . . . 5 (𝜑𝐵𝑊)
14 prssg 4382 . . . . 5 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹))
1512, 13, 14syl2anc 694 . . . 4 (𝜑 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ↔ {𝐴, 𝐵} ⊆ dom 𝐹))
16 hashdmpropge2.n . . . . 5 (𝜑𝐴𝐵)
17 neeq1 2885 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
18 neeq2 2886 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
1917, 18rspc2ev 3355 . . . . . . 7 ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹𝐴𝐵) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
20193expa 1284 . . . . . 6 (((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) ∧ 𝐴𝐵) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
2120expcom 450 . . . . 5 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2216, 21syl 17 . . . 4 (𝜑 → ((𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐹) → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2315, 22sylbird 250 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ dom 𝐹 → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏))
2411, 23mpd 15 . 2 (𝜑 → ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏)
25 hashge2el2difr 13301 . 2 ((dom 𝐹 ∈ V ∧ ∃𝑎 ∈ dom 𝐹𝑏 ∈ dom 𝐹 𝑎𝑏) → 2 ≤ (#‘dom 𝐹))
263, 24, 25syl2anc 694 1 (𝜑 → 2 ≤ (#‘dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  Vcvv 3231  wss 3607  {cpr 4212  cop 4216   class class class wbr 4685  dom cdm 5143  cfv 5926  cle 10113  2c2 11108  #chash 13157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158
This theorem is referenced by:  structvtxvallem  25954  structgrssvtxlem  25957
  Copyright terms: Public domain W3C validator