![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashbnd | Structured version Visualization version GIF version |
Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
hashbnd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11513 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
2 | ltpnf 12167 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
3 | rexr 10297 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
4 | pnfxr 10304 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
5 | xrltnle 10317 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) | |
6 | 3, 4, 5 | sylancl 697 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵)) |
7 | 2, 6 | mpbid 222 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵) |
9 | hashinf 13336 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞) | |
10 | 9 | breq1d 4814 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵)) |
11 | 10 | notbid 307 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵)) |
12 | 8, 11 | syl5ibrcom 237 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵)) |
13 | 12 | expdimp 452 | . . . 4 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
14 | 13 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵)) |
15 | 14 | con4d 114 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵 → 𝐴 ∈ Fin)) |
16 | 15 | 3impia 1110 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 Fincfn 8123 ℝcr 10147 +∞cpnf 10283 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 ℕ0cn0 11504 ♯chash 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-hash 13332 |
This theorem is referenced by: 0ringnnzr 19491 fta1glem2 24145 fta1blem 24147 lgsqrlem4 25294 fusgredgfi 26437 idomsubgmo 38296 pgrple2abl 42674 |
Copyright terms: Public domain | W3C validator |