MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Structured version   Visualization version   GIF version

Theorem hashbcval 15912
Description: Value of the "binomial set", the set of all 𝑁-element subsets of 𝐴. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcval ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Distinct variable groups:   𝑥,𝐶   𝑎,𝑏,𝑖,𝑥   𝐴,𝑎,𝑖,𝑥   𝑁,𝑎,𝑖,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 3361 . 2 (𝐴𝑉𝐴 ∈ V)
2 pwexg 4978 . . . . 5 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
32adantr 466 . . . 4 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐴 ∈ V)
4 rabexg 4942 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
53, 4syl 17 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V)
6 fveq2 6332 . . . . . . 7 (𝑏 = 𝑥 → (♯‘𝑏) = (♯‘𝑥))
76eqeq1d 2772 . . . . . 6 (𝑏 = 𝑥 → ((♯‘𝑏) = 𝑖 ↔ (♯‘𝑥) = 𝑖))
87cbvrabv 3348 . . . . 5 {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖}
9 simpl 468 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑎 = 𝐴)
109pweqd 4300 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝒫 𝑎 = 𝒫 𝐴)
11 simpr 471 . . . . . . 7 ((𝑎 = 𝐴𝑖 = 𝑁) → 𝑖 = 𝑁)
1211eqeq2d 2780 . . . . . 6 ((𝑎 = 𝐴𝑖 = 𝑁) → ((♯‘𝑥) = 𝑖 ↔ (♯‘𝑥) = 𝑁))
1310, 12rabeqbidv 3344 . . . . 5 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑥 ∈ 𝒫 𝑎 ∣ (♯‘𝑥) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
148, 13syl5eq 2816 . . . 4 ((𝑎 = 𝐴𝑖 = 𝑁) → {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
15 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
1614, 15ovmpt2ga 6936 . . 3 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁} ∈ V) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
175, 16mpd3an3 1572 . 2 ((𝐴 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
181, 17sylan 561 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  𝒫 cpw 4295  cfv 6031  (class class class)co 6792  cmpt2 6794  0cn0 11493  chash 13320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797
This theorem is referenced by:  hashbccl  15913  hashbcss  15914  hashbc0  15915  hashbc2  15916  ramval  15918  ram0  15932  ramub1lem1  15936  ramub1lem2  15937
  Copyright terms: Public domain W3C validator