Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc0 Structured version   Visualization version   GIF version

Theorem hashbc0 15916
 Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbc0 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11514 . . 3 0 ∈ ℕ0
2 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
32hashbcval 15913 . . 3 ((𝐴𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
41, 3mpan2 671 . 2 (𝐴𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
5 vex 3354 . . . . . . 7 𝑥 ∈ V
6 hasheq0 13356 . . . . . . 7 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
75, 6ax-mp 5 . . . . . 6 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
87anbi2i 609 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
9 id 22 . . . . . . 7 (𝑥 = ∅ → 𝑥 = ∅)
10 0elpw 4966 . . . . . . 7 ∅ ∈ 𝒫 𝐴
119, 10syl6eqel 2858 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)
1211pm4.71ri 550 . . . . 5 (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
138, 12bitr4i 267 . . . 4 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅)
1413abbii 2888 . . 3 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥𝑥 = ∅}
15 df-rab 3070 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)}
16 df-sn 4318 . . 3 {∅} = {𝑥𝑥 = ∅}
1714, 15, 163eqtr4i 2803 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅}
184, 17syl6eq 2821 1 (𝐴𝑉 → (𝐴𝐶0) = {∅})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {cab 2757  {crab 3065  Vcvv 3351  ∅c0 4063  𝒫 cpw 4298  {csn 4317  ‘cfv 6030  (class class class)co 6796   ↦ cmpt2 6798  0cc0 10142  ℕ0cn0 11499  ♯chash 13321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322 This theorem is referenced by:  0ram  15931
 Copyright terms: Public domain W3C validator