![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harval2 | Structured version Visualization version GIF version |
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
harval2 | ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harval 8508 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) |
3 | domsdomtr 8136 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ≺ 𝑥) | |
4 | sdomel 8148 | . . . . . . . . . . . . 13 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥)) | |
5 | 3, 4 | syl5 34 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ∈ 𝑥)) |
6 | 5 | imp 444 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
7 | 6 | an4s 886 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
8 | 7 | ancoms 468 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) → 𝑦 ∈ 𝑥) |
9 | 8 | 3impb 1279 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → 𝑦 ∈ 𝑥) |
10 | 9 | rabssdv 3715 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
12 | 2, 11 | eqsstrd 3672 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) ⊆ 𝑥) |
13 | 12 | expr 642 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
14 | 13 | ralrimiva 2995 | . . 3 ⊢ (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
15 | ssintrab 4532 | . . 3 ⊢ ((har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) | |
16 | 14, 15 | sylibr 224 | . 2 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
17 | harcl 8507 | . . . . 5 ⊢ (har‘𝐴) ∈ On | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ On) |
19 | harsdom 8859 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | |
20 | breq2 4689 | . . . . 5 ⊢ (𝑥 = (har‘𝐴) → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ (har‘𝐴))) | |
21 | 20 | elrab 3396 | . . . 4 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ((har‘𝐴) ∈ On ∧ 𝐴 ≺ (har‘𝐴))) |
22 | 18, 19, 21 | sylanbrc 699 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
23 | intss1 4524 | . . 3 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) |
25 | 16, 24 | eqssd 3653 | 1 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ⊆ wss 3607 ∩ cint 4507 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ‘cfv 5926 ≼ cdom 7995 ≺ csdm 7996 harchar 8502 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-wrecs 7452 df-recs 7513 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-oi 8456 df-har 8504 df-card 8803 |
This theorem is referenced by: alephnbtwn 8932 |
Copyright terms: Public domain | W3C validator |