MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd4 Structured version   Visualization version   GIF version

Theorem harmonicbnd4 24958
Description: The asymptotic behavior of Σ𝑚𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
harmonicbnd4 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicbnd4
StepHypRef Expression
1 fzfid 12980 . . . . . 6 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12577 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 467 . . . . . . 7 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 11268 . . . . . 6 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 14673 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
65recnd 10270 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
7 relogcl 24543 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
87recnd 10270 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
9 emre 24953 . . . . . 6 γ ∈ ℝ
109a1i 11 . . . . 5 (𝐴 ∈ ℝ+ → γ ∈ ℝ)
1110recnd 10270 . . . 4 (𝐴 ∈ ℝ+ → γ ∈ ℂ)
126, 8, 11subsub4d 10625 . . 3 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))
1312fveq2d 6336 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
14 rpreccl 12060 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
1514rpred 12075 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
16 resubcl 10547 . . . . 5 ((γ ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (γ − (1 / 𝐴)) ∈ ℝ)
179, 15, 16sylancr 575 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ∈ ℝ)
18 rprege0 12050 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
19 flge0nn0 12829 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2018, 19syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
21 nn0p1nn 11534 . . . . . . . 8 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
2220, 21syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
2322nnrpd 12073 . . . . . 6 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
24 relogcl 24543 . . . . . 6 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
2523, 24syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
265, 25resubcld 10660 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
275, 7resubcld 10660 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∈ ℝ)
2822nnrecred 11268 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℝ)
29 fzfid 12980 . . . . . . . 8 (𝐴 ∈ ℝ+ → (1...((⌊‘𝐴) + 1)) ∈ Fin)
30 elfznn 12577 . . . . . . . . . 10 (𝑚 ∈ (1...((⌊‘𝐴) + 1)) → 𝑚 ∈ ℕ)
3130adantl 467 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → 𝑚 ∈ ℕ)
3231nnrecred 11268 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℝ)
3329, 32fsumrecl 14673 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℝ)
3433, 25resubcld 10660 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ)
35 harmonicbnd 24951 . . . . . . . 8 (((⌊‘𝐴) + 1) ∈ ℕ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
3622, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1))
37 1re 10241 . . . . . . . . 9 1 ∈ ℝ
389, 37elicc2i 12444 . . . . . . . 8 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ 1))
3938simp2bi 1140 . . . . . . 7 ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
4036, 39syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → γ ≤ (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
41 rpre 12042 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
42 fllep1 12810 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
4341, 42syl 17 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
44 rpregt0 12049 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
4522nnred 11237 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ)
4622nngt0d 11266 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < ((⌊‘𝐴) + 1))
47 lerec 11108 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (((⌊‘𝐴) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝐴) + 1))) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4844, 45, 46, 47syl12anc 1474 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴)))
4943, 48mpbid 222 . . . . . 6 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ≤ (1 / 𝐴))
5010, 28, 34, 15, 40, 49le2subd 10849 . . . . 5 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
5133recnd 10270 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) ∈ ℂ)
5225recnd 10270 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℂ)
5328recnd 10270 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / ((⌊‘𝐴) + 1)) ∈ ℂ)
5451, 52, 53sub32d 10626 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))))
55 nnuz 11925 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5622, 55syl6eleq 2860 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ (ℤ‘1))
5732recnd 10270 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ (1...((⌊‘𝐴) + 1))) → (1 / 𝑚) ∈ ℂ)
58 oveq2 6801 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝐴) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝐴) + 1)))
5956, 57, 58fsumm1 14688 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6020nn0cnd 11555 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
61 ax-1cn 10196 . . . . . . . . . . . . . 14 1 ∈ ℂ
62 pncan 10489 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6360, 61, 62sylancl 574 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) − 1) = (⌊‘𝐴))
6463oveq2d 6809 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1...(((⌊‘𝐴) + 1) − 1)) = (1...(⌊‘𝐴)))
6564sumeq1d 14639 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
6665oveq1d 6808 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(((⌊‘𝐴) + 1) − 1))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6759, 66eqtrd 2805 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))))
6867oveq1d 6808 . . . . . . . 8 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))))
696, 53pncand 10595 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) + (1 / ((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7068, 69eqtrd 2805 . . . . . . 7 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) = Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
7170oveq1d 6808 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (1 / ((⌊‘𝐴) + 1))) − (log‘((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7254, 71eqtrd 2805 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...((⌊‘𝐴) + 1))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) − (1 / ((⌊‘𝐴) + 1))) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
7350, 72breqtrd 4812 . . . 4 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
74 logleb 24570 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ ((⌊‘𝐴) + 1) ∈ ℝ+) → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7523, 74mpdan 667 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
7643, 75mpbid 222 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
777, 25, 5, 76lesub2dd 10846 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7817, 26, 27, 73, 77letrd 10396 . . 3 (𝐴 ∈ ℝ+ → (γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)))
7927, 15resubcld 10660 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ∈ ℝ)
8015recnd 10270 . . . . . . 7 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℂ)
816, 8, 80subsub4d 10625 . . . . . 6 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))))
827, 15readdcld 10271 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) + (1 / 𝐴)) ∈ ℝ)
83 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
8423, 83relogdivd 24593 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) = ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)))
85 rerpdivcl 12064 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8645, 85mpancom 668 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ)
8737a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → 1 ∈ ℝ)
8887, 15readdcld 10271 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ∈ ℝ)
8915reefcld 15024 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ)
9061a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → 1 ∈ ℂ)
91 rpcnne0 12053 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
92 divdir 10912 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
9360, 90, 91, 92syl3anc 1476 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) = (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)))
94 reflcl 12805 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
9541, 94syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
96 rerpdivcl 12064 . . . . . . . . . . . . . . 15 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
9795, 96mpancom 668 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ∈ ℝ)
98 flle 12808 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
9941, 98syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
100 rpcn 12044 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
101100mulid1d 10259 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+ → (𝐴 · 1) = 𝐴)
10299, 101breqtrrd 4814 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ (𝐴 · 1))
103 ledivmul 11101 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
10495, 87, 44, 103syl3anc 1476 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) ≤ 1 ↔ (⌊‘𝐴) ≤ (𝐴 · 1)))
105102, 104mpbird 247 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) / 𝐴) ≤ 1)
10697, 87, 15, 105leadd1dd 10843 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) / 𝐴) + (1 / 𝐴)) ≤ (1 + (1 / 𝐴)))
10793, 106eqbrtrd 4808 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (1 + (1 / 𝐴)))
108 efgt1p 15051 . . . . . . . . . . . . . 14 ((1 / 𝐴) ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
10914, 108syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) < (exp‘(1 / 𝐴)))
11088, 89, 109ltled 10387 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (1 + (1 / 𝐴)) ≤ (exp‘(1 / 𝐴)))
11186, 88, 89, 107, 110letrd 10396 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)))
112 rpdivcl 12059 . . . . . . . . . . . . 13 ((((⌊‘𝐴) + 1) ∈ ℝ+𝐴 ∈ ℝ+) → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11323, 112mpancom 668 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (((⌊‘𝐴) + 1) / 𝐴) ∈ ℝ+)
11415rpefcld 15041 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+ → (exp‘(1 / 𝐴)) ∈ ℝ+)
115113, 114logled 24594 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → ((((⌊‘𝐴) + 1) / 𝐴) ≤ (exp‘(1 / 𝐴)) ↔ (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴)))))
116111, 115mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (log‘(exp‘(1 / 𝐴))))
11715relogefd 24595 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘(exp‘(1 / 𝐴))) = (1 / 𝐴))
118116, 117breqtrd 4812 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (log‘(((⌊‘𝐴) + 1) / 𝐴)) ≤ (1 / 𝐴))
11984, 118eqbrtrrd 4810 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴))
12025, 7, 15lesubadd2d 10828 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((log‘((⌊‘𝐴) + 1)) − (log‘𝐴)) ≤ (1 / 𝐴) ↔ (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴))))
121119, 120mpbid 222 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ ((log‘𝐴) + (1 / 𝐴)))
12225, 82, 5, 121lesub2dd 10846 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + (1 / 𝐴))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
12381, 122eqbrtrd 4808 . . . . 5 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
124 harmonicbnd3 24955 . . . . . . 7 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
12520, 124syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
126 0re 10242 . . . . . . . 8 0 ∈ ℝ
127126, 9elicc2i 12444 . . . . . . 7 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
128127simp3bi 1141 . . . . . 6 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
129125, 128syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ)
13079, 26, 10, 123, 129letrd 10396 . . . 4 (𝐴 ∈ ℝ+ → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ)
13127, 15, 10lesubaddd 10826 . . . 4 (𝐴 ∈ ℝ+ → (((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − (1 / 𝐴)) ≤ γ ↔ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴))))
132130, 131mpbid 222 . . 3 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))
13327, 10, 15absdifled 14381 . . 3 (𝐴 ∈ ℝ+ → ((abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴) ↔ ((γ − (1 / 𝐴)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) ≤ (γ + (1 / 𝐴)))))
13478, 132, 133mpbir2and 692 . 2 (𝐴 ∈ ℝ+ → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘𝐴)) − γ)) ≤ (1 / 𝐴))
13513, 134eqbrtrrd 4810 1 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  cn 11222  0cn0 11494  cuz 11888  +crp 12035  [,]cicc 12383  ...cfz 12533  cfl 12799  abscabs 14182  Σcsu 14624  expce 14998  logclog 24522  γcem 24939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-e 15005  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-em 24940
This theorem is referenced by:  mulogsumlem  25441  mulog2sumlem1  25444
  Copyright terms: Public domain W3C validator