![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > halfre | Structured version Visualization version GIF version |
Description: One-half is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
halfre | ⊢ (1 / 2) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 11253 | . 2 ⊢ 2 ∈ ℝ | |
2 | 2ne0 11276 | . 2 ⊢ 2 ≠ 0 | |
3 | 1, 2 | rereccli 10953 | 1 ⊢ (1 / 2) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2127 (class class class)co 6801 ℝcr 10098 1c1 10100 / cdiv 10847 2c2 11233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-po 5175 df-so 5176 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-2 11242 |
This theorem is referenced by: halfge0 11412 2tnp1ge0ge0 12795 rddif 14250 absrdbnd 14251 geo2sum 14774 geo2lim 14776 geoihalfsum 14784 efcllem 14978 ege2le3 14990 rpnnen2lem12 15124 oddge22np1 15246 ltoddhalfle 15258 halfleoddlt 15259 bitsp1o 15328 prmreclem5 15797 prmreclem6 15798 iihalf1 22902 iihalf1cn 22903 iihalf2 22904 iihalf2cn 22905 elii1 22906 elii2 22907 htpycc 22951 pcoval1 22984 pco0 22985 pco1 22986 pcoval2 22987 pcocn 22988 pcohtpylem 22990 pcopt 22993 pcopt2 22994 pcoass 22995 pcorevlem 22997 iscmet3lem3 23259 mbfi1fseqlem6 23657 itg2monolem3 23689 aaliou3lem1 24267 aaliou3lem2 24268 aaliou3lem3 24269 cxpsqrtlem 24618 cxpsqrt 24619 logsqrt 24620 ang180lem1 24709 heron 24735 asinsin 24789 birthday 24851 gausslemma2dlem1a 25260 chebbnd1 25331 chtppilim 25334 mulog2sumlem2 25394 opsqrlem4 29282 logdivsqrle 31008 subfacval3 31449 dnicld1 32739 dnizeq0 32742 dnizphlfeqhlf 32743 rddif2 32744 dnibndlem2 32746 dnibndlem3 32747 dnibndlem4 32748 dnibndlem5 32749 dnibndlem6 32750 dnibndlem7 32751 dnibndlem8 32752 dnibndlem9 32753 dnibndlem10 32754 dnibndlem11 32755 dnibndlem12 32756 dnibndlem13 32757 dnibnd 32758 knoppcnlem4 32763 cnndvlem1 32805 cntotbnd 33877 halffl 39978 stoweidlem5 40694 stoweidlem14 40703 stoweidlem28 40717 dirkertrigeqlem2 40788 dirkeritg 40791 dirkercncflem2 40793 fourierdlem18 40814 fourierdlem66 40861 fourierdlem78 40873 fourierdlem83 40878 fourierdlem87 40882 fourierdlem104 40899 zofldiv2ALTV 42053 zofldiv2 42804 |
Copyright terms: Public domain | W3C validator |