![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h2hsm | Structured version Visualization version GIF version |
Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
h2hsm | ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . . . 4 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | smfval 27761 | . . 3 ⊢ ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
3 | opex 5073 | . . . . 5 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ V | |
4 | h2h.1 | . . . . . . . 8 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
5 | h2h.2 | . . . . . . . 8 ⊢ 𝑈 ∈ NrmCVec | |
6 | 4, 5 | eqeltrri 2828 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
7 | nvex 27767 | . . . . . . 7 ⊢ (〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec → ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V) |
9 | 8 | simp3i 1135 | . . . . 5 ⊢ normℎ ∈ V |
10 | 3, 9 | op1st 7333 | . . . 4 ⊢ (1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = 〈 +ℎ , ·ℎ 〉 |
11 | 10 | fveq2i 6347 | . . 3 ⊢ (2nd ‘(1st ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (2nd ‘〈 +ℎ , ·ℎ 〉) |
12 | 8 | simp1i 1133 | . . . 4 ⊢ +ℎ ∈ V |
13 | 8 | simp2i 1134 | . . . 4 ⊢ ·ℎ ∈ V |
14 | 12, 13 | op2nd 7334 | . . 3 ⊢ (2nd ‘〈 +ℎ , ·ℎ 〉) = ·ℎ |
15 | 2, 11, 14 | 3eqtrri 2779 | . 2 ⊢ ·ℎ = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
16 | 4 | fveq2i 6347 | . 2 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
17 | 15, 16 | eqtr4i 2777 | 1 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 Vcvv 3332 〈cop 4319 ‘cfv 6041 1st c1st 7323 2nd c2nd 7324 NrmCVeccnv 27740 ·𝑠OLD cns 27743 +ℎ cva 28078 ·ℎ csm 28079 normℎcno 28081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fo 6047 df-fv 6049 df-oprab 6809 df-1st 7325 df-2nd 7326 df-vc 27715 df-nv 27748 df-sm 27753 |
This theorem is referenced by: h2hvs 28135 axhfvmul-zf 28145 axhvmulid-zf 28146 axhvmulass-zf 28147 axhvdistr1-zf 28148 axhvdistr2-zf 28149 axhvmul0-zf 28150 axhis3-zf 28154 hhsm 28327 |
Copyright terms: Public domain | W3C validator |