Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hnm Structured version   Visualization version   GIF version

Theorem h2hnm 27961
 Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2h.2 𝑈 ∈ NrmCVec
Assertion
Ref Expression
h2hnm norm = (normCV𝑈)

Proof of Theorem h2hnm
StepHypRef Expression
1 h2h.1 . . 3 𝑈 = ⟨⟨ + , · ⟩, norm
21fveq2i 6232 . 2 (normCV𝑈) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
3 eqid 2651 . . 3 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (normCV‘⟨⟨ + , · ⟩, norm⟩)
43nmcvfval 27590 . 2 (normCV‘⟨⟨ + , · ⟩, norm⟩) = (2nd ‘⟨⟨ + , · ⟩, norm⟩)
5 opex 4962 . . 3 ⟨ + , · ⟩ ∈ V
6 h2h.2 . . . . . 6 𝑈 ∈ NrmCVec
71, 6eqeltrri 2727 . . . . 5 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
8 nvex 27594 . . . . 5 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( + ∈ V ∧ · ∈ V ∧ norm ∈ V))
97, 8ax-mp 5 . . . 4 ( + ∈ V ∧ · ∈ V ∧ norm ∈ V)
109simp3i 1092 . . 3 norm ∈ V
115, 10op2nd 7219 . 2 (2nd ‘⟨⟨ + , · ⟩, norm⟩) = norm
122, 4, 113eqtrri 2678 1 norm = (normCV𝑈)
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  Vcvv 3231  ⟨cop 4216  ‘cfv 5926  2nd c2nd 7209  NrmCVeccnv 27567  normCVcnmcv 27573   +ℎ cva 27905   ·ℎ csm 27906  normℎcno 27908 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fv 5934  df-oprab 6694  df-2nd 7211  df-vc 27542  df-nv 27575  df-nmcv 27583 This theorem is referenced by:  h2hmetdval  27963  hhnm  28156
 Copyright terms: Public domain W3C validator