HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2ctlem Structured version   Visualization version   GIF version

Theorem h1de2ctlem 28542
Description: Lemma for h1de2ci 28543. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2ctlem (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem h1de2ctlem
StepHypRef Expression
1 sneq 4220 . . . . . . . 8 (𝐵 = 0 → {𝐵} = {0})
21fveq2d 6233 . . . . . . 7 (𝐵 = 0 → (⊥‘{𝐵}) = (⊥‘{0}))
32fveq2d 6233 . . . . . 6 (𝐵 = 0 → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0})))
43eleq2d 2716 . . . . 5 (𝐵 = 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0}))))
5 h1de2.1 . . . . . . . 8 𝐴 ∈ ℋ
65elexi 3244 . . . . . . 7 𝐴 ∈ V
76elsn 4225 . . . . . 6 (𝐴 ∈ {0} ↔ 𝐴 = 0)
8 hsn0elch 28233 . . . . . . . 8 {0} ∈ C
98ococi 28392 . . . . . . 7 (⊥‘(⊥‘{0})) = {0}
109eleq2i 2722 . . . . . 6 (𝐴 ∈ (⊥‘(⊥‘{0})) ↔ 𝐴 ∈ {0})
11 h1de2.2 . . . . . . . 8 𝐵 ∈ ℋ
12 ax-hvmul0 27995 . . . . . . . 8 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
1311, 12ax-mp 5 . . . . . . 7 (0 · 𝐵) = 0
1413eqeq2i 2663 . . . . . 6 (𝐴 = (0 · 𝐵) ↔ 𝐴 = 0)
157, 10, 143bitr4ri 293 . . . . 5 (𝐴 = (0 · 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0})))
164, 15syl6rbbr 279 . . . 4 (𝐵 = 0 → (𝐴 = (0 · 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
17 0cn 10070 . . . . 5 0 ∈ ℂ
18 oveq1 6697 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
1918eqeq2d 2661 . . . . . 6 (𝑥 = 0 → (𝐴 = (𝑥 · 𝐵) ↔ 𝐴 = (0 · 𝐵)))
2019rspcev 3340 . . . . 5 ((0 ∈ ℂ ∧ 𝐴 = (0 · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
2117, 20mpan 706 . . . 4 (𝐴 = (0 · 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
2216, 21syl6bir 244 . . 3 (𝐵 = 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
235, 11h1de2bi 28541 . . . 4 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
24 his6 28084 . . . . . . . . 9 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
2511, 24ax-mp 5 . . . . . . . 8 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
2625necon3bii 2875 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
275, 11hicli 28066 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
2811, 11hicli 28066 . . . . . . . 8 (𝐵 ·ih 𝐵) ∈ ℂ
2927, 28divclzi 10798 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
3026, 29sylbir 225 . . . . . 6 (𝐵 ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
31 oveq1 6697 . . . . . . . 8 (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3231eqeq2d 2661 . . . . . . 7 (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝐴 = (𝑥 · 𝐵) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
3332rspcev 3340 . . . . . 6 ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
3430, 33sylan 487 . . . . 5 ((𝐵 ≠ 0𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
3534ex 449 . . . 4 (𝐵 ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
3623, 35sylbid 230 . . 3 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
3722, 36pm2.61ine 2906 . 2 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
38 snssi 4371 . . . . . . . 8 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
39 occl 28291 . . . . . . . 8 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
4011, 38, 39mp2b 10 . . . . . . 7 (⊥‘{𝐵}) ∈ C
4140choccli 28294 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ C
4241chshii 28212 . . . . 5 (⊥‘(⊥‘{𝐵})) ∈ S
43 h1did 28538 . . . . . 6 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
4411, 43ax-mp 5 . . . . 5 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
45 shmulcl 28203 . . . . 5 (((⊥‘(⊥‘{𝐵})) ∈ S𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4642, 44, 45mp3an13 1455 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
47 eleq1 2718 . . . 4 (𝐴 = (𝑥 · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
4846, 47syl5ibrcom 237 . . 3 (𝑥 ∈ ℂ → (𝐴 = (𝑥 · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
4948rexlimiv 3056 . 2 (∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))
5037, 49impbii 199 1 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  wne 2823  wrex 2942  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974   / cdiv 10722  chil 27904   · csm 27906   ·ih csp 27907  0c0v 27909   S csh 27913   C cch 27914  cort 27915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238
This theorem is referenced by:  h1de2ci  28543
  Copyright terms: Public domain W3C validator