![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h1de2bi | Structured version Visualization version GIF version |
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1de2.1 | ⊢ 𝐴 ∈ ℋ |
h1de2.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1de2bi | ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1de2.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
2 | his6 28265 | . . . 4 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
4 | 3 | necon3bii 2984 | . 2 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
5 | h1de2.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ | |
6 | 5, 1 | h1de2i 28721 | . . . . . . . 8 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) |
7 | 6 | adantl 473 | . . . . . . 7 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((𝐵 ·ih 𝐵) ·ℎ 𝐴) = ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) |
8 | 7 | oveq2d 6829 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
9 | 1, 1 | hicli 28247 | . . . . . . . . . . 11 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
10 | 9 | recclzi 10942 | . . . . . . . . . 10 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (1 / (𝐵 ·ih 𝐵)) ∈ ℂ) |
11 | ax-hvmulass 28173 | . . . . . . . . . . 11 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) | |
12 | 9, 5, 11 | mp3an23 1565 | . . . . . . . . . 10 ⊢ ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) |
13 | 10, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴))) |
14 | ax-1cn 10186 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
15 | 14, 9 | divcan1zi 10953 | . . . . . . . . . 10 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = 1) |
16 | 15 | oveq1d 6828 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) ·ℎ 𝐴) = (1 ·ℎ 𝐴)) |
17 | 13, 16 | eqtr3d 2796 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = (1 ·ℎ 𝐴)) |
18 | ax-hvmulid 28172 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | |
19 | 5, 18 | ax-mp 5 | . . . . . . . 8 ⊢ (1 ·ℎ 𝐴) = 𝐴 |
20 | 17, 19 | syl6eq 2810 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = 𝐴) |
21 | 20 | adantr 472 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐵 ·ih 𝐵) ·ℎ 𝐴)) = 𝐴) |
22 | 8, 21 | eqtr3d 2796 | . . . . 5 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = 𝐴) |
23 | 5, 1 | hicli 28247 | . . . . . . . . 9 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
24 | ax-hvmulass 28173 | . . . . . . . . 9 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) | |
25 | 23, 1, 24 | mp3an23 1565 | . . . . . . . 8 ⊢ ((1 / (𝐵 ·ih 𝐵)) ∈ ℂ → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
26 | 10, 25 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵))) |
27 | mulcom 10214 | . . . . . . . . . 10 ⊢ (((1 / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) | |
28 | 10, 23, 27 | sylancl 697 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) |
29 | 23, 9 | divreczi 10955 | . . . . . . . . 9 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (1 / (𝐵 ·ih 𝐵)))) |
30 | 28, 29 | eqtr4d 2797 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵))) |
31 | 30 | oveq1d 6828 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((1 / (𝐵 ·ih 𝐵)) · (𝐴 ·ih 𝐵)) ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
32 | 26, 31 | eqtr3d 2796 | . . . . . 6 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
33 | 32 | adantr 472 | . . . . 5 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → ((1 / (𝐵 ·ih 𝐵)) ·ℎ ((𝐴 ·ih 𝐵) ·ℎ 𝐵)) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
34 | 22, 33 | eqtr3d 2796 | . . . 4 ⊢ (((𝐵 ·ih 𝐵) ≠ 0 ∧ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) |
35 | 34 | ex 449 | . . 3 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
36 | 23, 9 | divclzi 10952 | . . . . 5 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
37 | 1 | elexi 3353 | . . . . . . . . . . 11 ⊢ 𝐵 ∈ V |
38 | 37 | snss 4460 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℋ ↔ {𝐵} ⊆ ℋ) |
39 | 1, 38 | mpbi 220 | . . . . . . . . 9 ⊢ {𝐵} ⊆ ℋ |
40 | occl 28472 | . . . . . . . . 9 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
41 | 39, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
42 | 41 | choccli 28475 | . . . . . . 7 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
43 | 42 | chshii 28393 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
44 | h1did 28719 | . . . . . . 7 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
45 | 1, 44 | ax-mp 5 | . . . . . 6 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
46 | shmulcl 28384 | . . . . . 6 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
47 | 43, 45, 46 | mp3an13 1564 | . . . . 5 ⊢ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
48 | 36, 47 | syl 17 | . . . 4 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
49 | eleq1 2827 | . . . 4 ⊢ (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
50 | 48, 49 | syl5ibrcom 237 | . . 3 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
51 | 35, 50 | impbid 202 | . 2 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
52 | 4, 51 | sylbir 225 | 1 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ⊆ wss 3715 {csn 4321 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 0cc0 10128 1c1 10129 · cmul 10133 / cdiv 10876 ℋchil 28085 ·ℎ csm 28087 ·ih csp 28088 0ℎc0v 28090 Sℋ csh 28094 Cℋ cch 28095 ⊥cort 28096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 ax-hilex 28165 ax-hfvadd 28166 ax-hvcom 28167 ax-hvass 28168 ax-hv0cl 28169 ax-hvaddid 28170 ax-hfvmul 28171 ax-hvmulid 28172 ax-hvmulass 28173 ax-hvdistr1 28174 ax-hvdistr2 28175 ax-hvmul0 28176 ax-hfi 28245 ax-his1 28248 ax-his2 28249 ax-his3 28250 ax-his4 28251 ax-hcompl 28368 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-icc 12375 df-fz 12520 df-fzo 12660 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-sum 14616 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cn 21233 df-cnp 21234 df-lm 21235 df-haus 21321 df-tx 21567 df-hmeo 21760 df-xms 22326 df-ms 22327 df-tms 22328 df-cau 23254 df-grpo 27656 df-gid 27657 df-ginv 27658 df-gdiv 27659 df-ablo 27708 df-vc 27723 df-nv 27756 df-va 27759 df-ba 27760 df-sm 27761 df-0v 27762 df-vs 27763 df-nmcv 27764 df-ims 27765 df-dip 27865 df-hnorm 28134 df-hvsub 28137 df-hlim 28138 df-hcau 28139 df-sh 28373 df-ch 28387 df-oc 28418 |
This theorem is referenced by: h1de2ctlem 28723 elspansn2 28735 |
Copyright terms: Public domain | W3C validator |