![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h0elch | Structured version Visualization version GIF version |
Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h0elch | ⊢ 0ℋ ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 28340 | . 2 ⊢ 0ℋ = {0ℎ} | |
2 | hsn0elch 28335 | . 2 ⊢ {0ℎ} ∈ Cℋ | |
3 | 1, 2 | eqeltri 2799 | 1 ⊢ 0ℋ ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 {csn 4285 0ℎc0v 28011 Cℋ cch 28016 0ℋc0h 28022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 ax-hilex 28086 ax-hfvadd 28087 ax-hvcom 28088 ax-hvass 28089 ax-hv0cl 28090 ax-hvaddid 28091 ax-hfvmul 28092 ax-hvmulid 28093 ax-hvmulass 28094 ax-hvdistr1 28095 ax-hvdistr2 28096 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his2 28170 ax-his3 28171 ax-his4 28172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-map 7976 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-sup 8464 df-inf 8465 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-n0 11406 df-z 11491 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-icc 12296 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-topgen 16227 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-top 20822 df-topon 20839 df-bases 20873 df-lm 21156 df-haus 21242 df-grpo 27577 df-gid 27578 df-ginv 27579 df-gdiv 27580 df-ablo 27629 df-vc 27644 df-nv 27677 df-va 27680 df-ba 27681 df-sm 27682 df-0v 27683 df-vs 27684 df-nmcv 27685 df-ims 27686 df-hnorm 28055 df-hvsub 28058 df-hlim 28059 df-sh 28294 df-ch 28308 df-ch0 28340 |
This theorem is referenced by: h0elsh 28343 chintcl 28421 omlsi 28493 pjoml 28525 pjoc2 28528 chj0i 28544 chj00i 28576 chm0 28580 chne0 28583 chocin 28584 chj0 28586 chlejb1 28601 chnle 28603 ledi 28629 chsup0 28637 h1datom 28671 cmbr3 28697 cm0 28698 pjoml2 28700 cmcm 28703 cmcm3 28704 lecm 28706 qlaxr3i 28725 nonbooli 28740 pjige0 28780 pjhfo 28795 pj11 28803 ho0f 28840 pjhmop 29239 pjidmco 29270 hst0 29322 largei 29356 mdslmd1lem3 29416 mdslmd1lem4 29417 csmdsymi 29423 elat2 29429 atcveq0 29437 hatomic 29449 atcv0eq 29468 atoml2i 29472 atordi 29473 atord 29477 atcvat2 29478 chirred 29484 |
Copyright terms: Public domain | W3C validator |