![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gtneii | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
gtneii | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . 2 ⊢ 𝐴 < 𝐵 | |
3 | ltne 10346 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 ℝcr 10147 < clt 10286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 |
This theorem is referenced by: ltneii 10362 fztpval 12615 geo2sum 14823 bpoly4 15009 ene1 15157 3dvds 15274 3dvdsOLD 15275 3lcm2e6 15662 resslem 16155 rescco 16713 oppgtset 18002 mgpsca 18716 mgptset 18717 mgpds 18719 cnfldfun 19980 psgnodpmr 20158 matsca 20443 matvsca 20444 tuslem 22292 setsmsds 22502 tngds 22673 logbrec 24740 log2le1 24897 2lgsoddprmlem3a 25355 2lgsoddprmlem3b 25356 2lgsoddprmlem3c 25357 2lgsoddprmlem3d 25358 konigsberglem2 27426 ex-dif 27612 ex-in 27614 ex-pss 27617 ex-res 27630 dp20u 29915 dp20h 29916 dp2clq 29918 dp2lt10 29921 dp2lt 29922 dplti 29943 dpexpp1 29946 oppgle 29983 resvvsca 30164 zlmds 30338 zlmtset 30339 ballotlemi1 30894 sgnnbi 30937 sgnpbi 30938 signswch 30968 itgexpif 31014 hgt750lemd 31056 hgt750lem 31059 fdc 33872 areaquad 38322 stirlinglem4 40815 stirlinglem13 40824 stirlinglem14 40825 stirlingr 40828 dirker2re 40830 dirkerdenne0 40831 dirkerre 40833 dirkertrigeqlem1 40836 dirkercncflem2 40842 dirkercncflem4 40844 fourierdlem16 40861 fourierdlem21 40866 fourierdlem22 40867 fourierdlem66 40910 fourierdlem83 40927 fourierdlem103 40947 fourierdlem104 40948 sqwvfoura 40966 sqwvfourb 40967 fourierswlem 40968 fouriersw 40969 etransclem46 41018 fmtnoprmfac2lem1 42006 zlmodzxzldeplem 42815 |
Copyright terms: Public domain | W3C validator |