![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gtndiv | Structured version Visualization version GIF version |
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
gtndiv | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11219 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
2 | 1 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
3 | simp1 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) | |
4 | nngt0 11241 | . . . 4 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
5 | 4 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵) |
6 | 4 | adantl 473 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
7 | 0re 10232 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | lttr 10306 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) | |
9 | 7, 8 | mp3an1 1560 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
10 | 1, 9 | sylan 489 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
11 | 10 | ancoms 468 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵 ∧ 𝐵 < 𝐴) → 0 < 𝐴)) |
12 | 6, 11 | mpand 713 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴)) |
13 | 12 | 3impia 1110 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴) |
14 | 2, 3, 5, 13 | divgt0d 11151 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴)) |
15 | simp3 1133 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
16 | 1re 10231 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
17 | ltdivmul2 11092 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) | |
18 | 16, 17 | mp3an2 1561 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
19 | 2, 3, 13, 18 | syl12anc 1475 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴))) |
20 | recn 10218 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
21 | 20 | mulid2d 10250 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
22 | 21 | breq2d 4816 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
23 | 22 | 3ad2ant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴)) |
24 | 19, 23 | bitrd 268 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴)) |
25 | 15, 24 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1) |
26 | 0p1e1 11324 | . . 3 ⊢ (0 + 1) = 1 | |
27 | 25, 26 | syl6breqr 4846 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1)) |
28 | 0z 11580 | . . 3 ⊢ 0 ∈ ℤ | |
29 | btwnnz 11645 | . . 3 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) | |
30 | 28, 29 | mp3an1 1560 | . 2 ⊢ ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
31 | 14, 27, 30 | syl2anc 696 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 < clt 10266 / cdiv 10876 ℕcn 11212 ℤcz 11569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-n0 11485 df-z 11570 |
This theorem is referenced by: prime 11650 |
Copyright terms: Public domain | W3C validator |