![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0ne0 | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10079 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | ltne 10172 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | sylan 487 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ℝcr 9973 0cc0 9974 < clt 10112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 |
This theorem is referenced by: recgt0 10905 lemul1 10913 lediv1 10926 gt0div 10927 ge0div 10928 mulge0b 10931 ltdivmul 10936 ledivmul 10937 lt2mul2div 10939 lemuldiv 10941 ltdiv2 10947 ltrec1 10948 lerec2 10949 ledivdiv 10950 lediv2 10951 ltdiv23 10952 lediv23 10953 lediv12a 10954 recreclt 10960 nnrecl 11328 elnnz 11425 recnz 11490 rpne0 11886 divelunit 12352 resqrex 14035 sqrtgt0 14043 argregt0 24401 argimgt0 24403 logneg2 24406 logcnlem3 24435 atanlogsublem 24687 leopmul 29121 cdj1i 29420 lediv2aALT 31697 nndivlub 32582 knoppndvlem15 32642 knoppndvlem17 32644 sineq0ALT 39487 |
Copyright terms: Public domain | W3C validator |