Step | Hyp | Ref
| Expression |
1 | | gsumzcl.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
2 | | gsumzcl.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | gsumzcl.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
4 | 3 | gsumz 17496 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
5 | 1, 2, 4 | syl2anc 696 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
6 | | gsumzf1o.h |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) |
7 | | f1of1 6249 |
. . . . . . . . 9
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶–1-1→𝐴) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐻:𝐶–1-1→𝐴) |
9 | | f1dmex 7253 |
. . . . . . . 8
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) |
10 | 8, 2, 9 | syl2anc 696 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ V) |
11 | 3 | gsumz 17496 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐶 ∈ V) → (𝐺 Σg
(𝑥 ∈ 𝐶 ↦ 0 )) = 0 ) |
12 | 1, 10, 11 | syl2anc 696 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐶 ↦ 0 )) = 0 ) |
13 | 5, 12 | eqtr4d 2761 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = (𝐺 Σg (𝑥 ∈ 𝐶 ↦ 0 ))) |
14 | 13 | adantr 472 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝑘 ∈ 𝐴 ↦ 0 )) = (𝐺 Σg (𝑥 ∈ 𝐶 ↦ 0 ))) |
15 | | gsumzcl.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
16 | | fvex 6314 |
. . . . . . . 8
⊢
(0g‘𝐺) ∈ V |
17 | 3, 16 | eqeltri 2799 |
. . . . . . 7
⊢ 0 ∈
V |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ V) |
19 | | ssid 3730 |
. . . . . . 7
⊢ (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ) |
20 | 19 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
21 | 15, 2, 18, 20 | gsumcllem 18430 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 0 )) |
22 | 21 | oveq2d 6781 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
23 | | f1of 6250 |
. . . . . . . . 9
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶⟶𝐴) |
24 | 6, 23 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐻:𝐶⟶𝐴) |
25 | 24 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻:𝐶⟶𝐴) |
26 | 25 | ffvelrnda 6474 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹 supp 0 ) = ∅) ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝐴) |
27 | 25 | feqmptd 6363 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐻 = (𝑥 ∈ 𝐶 ↦ (𝐻‘𝑥))) |
28 | | eqidd 2725 |
. . . . . 6
⊢ (𝑘 = (𝐻‘𝑥) → 0 = 0 ) |
29 | 26, 27, 21, 28 | fmptco 6511 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ∘ 𝐻) = (𝑥 ∈ 𝐶 ↦ 0 )) |
30 | 29 | oveq2d 6781 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝐹 ∘ 𝐻)) = (𝐺 Σg (𝑥 ∈ 𝐶 ↦ 0 ))) |
31 | 14, 22, 30 | 3eqtr4d 2768 |
. . 3
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
32 | 31 | ex 449 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻)))) |
33 | | coass 5767 |
. . . . . . . . . . 11
⊢ ((𝐻 ∘ ◡𝐻) ∘ 𝑓) = (𝐻 ∘ (◡𝐻 ∘ 𝑓)) |
34 | 6 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐻:𝐶–1-1-onto→𝐴) |
35 | | f1ococnv2 6276 |
. . . . . . . . . . . . . 14
⊢ (𝐻:𝐶–1-1-onto→𝐴 → (𝐻 ∘ ◡𝐻) = ( I ↾ 𝐴)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐻 ∘ ◡𝐻) = ( I ↾ 𝐴)) |
37 | 36 | coeq1d 5391 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻 ∘ ◡𝐻) ∘ 𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
38 | | f1of1 6249 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
39 | 38 | ad2antll 767 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
40 | | suppssdm 7428 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
41 | | fdm 6164 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
42 | 15, 41 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐹 = 𝐴) |
43 | 40, 42 | syl5sseq 3759 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴) |
44 | 43 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴) |
45 | | f1ss 6219 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
46 | 39, 44, 45 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
47 | | f1f 6214 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴 → 𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴) |
48 | | fcoi2 6192 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) |
49 | 46, 47, 48 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (( I ↾
𝐴) ∘ 𝑓) = 𝑓) |
50 | 37, 49 | eqtrd 2758 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐻 ∘ ◡𝐻) ∘ 𝑓) = 𝑓) |
51 | 33, 50 | syl5reqr 2773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓 = (𝐻 ∘ (◡𝐻 ∘ 𝑓))) |
52 | 51 | coeq2d 5392 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ∘ 𝑓) = (𝐹 ∘ (𝐻 ∘ (◡𝐻 ∘ 𝑓)))) |
53 | | coass 5767 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)) = (𝐹 ∘ (𝐻 ∘ (◡𝐻 ∘ 𝑓))) |
54 | 52, 53 | syl6eqr 2776 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ∘ 𝑓) = ((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓))) |
55 | 54 | seqeq3d 12924 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) = seq1((+g‘𝐺), ((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)))) |
56 | 55 | fveq1d 6306 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) =
(seq1((+g‘𝐺), ((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 )))) |
57 | | gsumzcl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
58 | | eqid 2724 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
59 | | gsumzcl.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
60 | 1 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd) |
61 | 2 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴 ∈ 𝑉) |
62 | 15 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴⟶𝐵) |
63 | | gsumzcl.c |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
64 | 63 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
65 | | simprl 811 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(♯‘(𝐹 supp
0 ))
∈ ℕ) |
66 | | f1ofo 6257 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 )) |
67 | | forn 6231 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
68 | 66, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
69 | 68 | ad2antll 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 )) |
70 | 19, 69 | syl5sseqr 3760 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
71 | | eqid 2724 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
72 | 57, 3, 58, 59, 60, 61, 62, 64, 65, 46, 70, 71 | gsumval3 18429 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
𝐹) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 )))) |
73 | 10 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐶 ∈ V) |
74 | | fco 6171 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐻:𝐶⟶𝐴) → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
75 | 15, 24, 74 | syl2anc 696 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
76 | 75 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
77 | | rncoss 5493 |
. . . . . . . . 9
⊢ ran
(𝐹 ∘ 𝐻) ⊆ ran 𝐹 |
78 | 59 | cntzidss 17891 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹 ∘ 𝐻) ⊆ ran 𝐹) → ran (𝐹 ∘ 𝐻) ⊆ (𝑍‘ran (𝐹 ∘ 𝐻))) |
79 | 63, 77, 78 | sylancl 697 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐹 ∘ 𝐻) ⊆ (𝑍‘ran (𝐹 ∘ 𝐻))) |
80 | 79 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹 ∘ 𝐻) ⊆ (𝑍‘ran (𝐹 ∘ 𝐻))) |
81 | | f1ocnv 6262 |
. . . . . . . . . 10
⊢ (𝐻:𝐶–1-1-onto→𝐴 → ◡𝐻:𝐴–1-1-onto→𝐶) |
82 | | f1of1 6249 |
. . . . . . . . . 10
⊢ (◡𝐻:𝐴–1-1-onto→𝐶 → ◡𝐻:𝐴–1-1→𝐶) |
83 | 6, 81, 82 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝐻:𝐴–1-1→𝐶) |
84 | 83 | adantr 472 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ◡𝐻:𝐴–1-1→𝐶) |
85 | | f1co 6223 |
. . . . . . . 8
⊢ ((◡𝐻:𝐴–1-1→𝐶 ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) → (◡𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1→𝐶) |
86 | 84, 46, 85 | syl2anc 696 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (◡𝐻 ∘ 𝑓):(1...(♯‘(𝐹 supp 0 )))–1-1→𝐶) |
87 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
88 | | fex 6605 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
89 | 15, 2, 88 | syl2anc 696 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ V) |
90 | | suppimacnv 7426 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
91 | 89, 17, 90 | sylancl 697 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
92 | 91 | eqcomd 2730 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 )) |
93 | 92 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (◡𝐹 “ (V ∖ { 0 })) = (𝐹 supp 0 )) |
94 | 87, 93, 69 | 3sstr4d 3754 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (◡𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓) |
95 | | imass2 5611 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ (V ∖ { 0 })) ⊆ ran 𝑓 → (◡𝐻 “ (◡𝐹 “ (V ∖ { 0 }))) ⊆ (◡𝐻 “ ran 𝑓)) |
96 | 94, 95 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (◡𝐻 “ (◡𝐹 “ (V ∖ { 0 }))) ⊆ (◡𝐻 “ ran 𝑓)) |
97 | | cnvco 5415 |
. . . . . . . . . . 11
⊢ ◡(𝐹 ∘ 𝐻) = (◡𝐻 ∘ ◡𝐹) |
98 | 97 | imaeq1i 5573 |
. . . . . . . . . 10
⊢ (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 })) = ((◡𝐻 ∘ ◡𝐹) “ (V ∖ { 0 })) |
99 | | imaco 5753 |
. . . . . . . . . 10
⊢ ((◡𝐻 ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐻 “ (◡𝐹 “ (V ∖ { 0 }))) |
100 | 98, 99 | eqtri 2746 |
. . . . . . . . 9
⊢ (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 })) = (◡𝐻 “ (◡𝐹 “ (V ∖ { 0 }))) |
101 | | rnco2 5755 |
. . . . . . . . 9
⊢ ran
(◡𝐻 ∘ 𝑓) = (◡𝐻 “ ran 𝑓) |
102 | 96, 100, 101 | 3sstr4g 3752 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 })) ⊆ ran (◡𝐻 ∘ 𝑓)) |
103 | | f1oexrnex 7232 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐶–1-1-onto→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻 ∈ V) |
104 | 6, 2, 103 | syl2anc 696 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ V) |
105 | | coexg 7234 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → (𝐹 ∘ 𝐻) ∈ V) |
106 | 89, 104, 105 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ V) |
107 | | suppimacnv 7426 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝐻) ∈ V ∧ 0 ∈ V) → ((𝐹 ∘ 𝐻) supp 0 ) = (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 }))) |
108 | 106, 17, 107 | sylancl 697 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 ∘ 𝐻) supp 0 ) = (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 }))) |
109 | 108 | sseq1d 3738 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ∘ 𝐻) supp 0 ) ⊆ ran (◡𝐻 ∘ 𝑓) ↔ (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 })) ⊆ ran (◡𝐻 ∘ 𝑓))) |
110 | 109 | adantr 472 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (((𝐹 ∘ 𝐻) supp 0 ) ⊆ ran (◡𝐻 ∘ 𝑓) ↔ (◡(𝐹 ∘ 𝐻) “ (V ∖ { 0 })) ⊆ ran (◡𝐻 ∘ 𝑓))) |
111 | 102, 110 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹 ∘ 𝐻) supp 0 ) ⊆ ran (◡𝐻 ∘ 𝑓)) |
112 | | eqid 2724 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)) supp 0 ) = (((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)) supp 0 ) |
113 | 57, 3, 58, 59, 60, 73, 76, 80, 65, 86, 111, 112 | gsumval3 18429 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
(𝐹 ∘ 𝐻)) =
(seq1((+g‘𝐺), ((𝐹 ∘ 𝐻) ∘ (◡𝐻 ∘ 𝑓)))‘(♯‘(𝐹 supp 0 )))) |
114 | 56, 72, 113 | 3eqtr4d 2768 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |
115 | 114 | expr 644 |
. . . 4
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻)))) |
116 | 115 | exlimdv 1974 |
. . 3
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻)))) |
117 | 116 | expimpd 630 |
. 2
⊢ (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻)))) |
118 | | gsumzcl.w |
. . 3
⊢ (𝜑 → 𝐹 finSupp 0 ) |
119 | | fsuppimp 8397 |
. . . 4
⊢ (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈
Fin)) |
120 | 119 | simprd 482 |
. . 3
⊢ (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈
Fin) |
121 | | fz1f1o 14561 |
. . 3
⊢ ((𝐹 supp 0 ) ∈ Fin →
((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
122 | 118, 120,
121 | 3syl 18 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
123 | 32, 117, 122 | mpjaod 395 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ∘ 𝐻))) |