MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzcl Structured version   Visualization version   GIF version

Theorem gsumzcl 18525
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumzcl
StepHypRef Expression
1 gsumzcl.b . 2 𝐵 = (Base‘𝐺)
2 gsumzcl.0 . 2 0 = (0g𝐺)
3 gsumzcl.z . 2 𝑍 = (Cntz‘𝐺)
4 gsumzcl.g . 2 (𝜑𝐺 ∈ Mnd)
5 gsumzcl.a . 2 (𝜑𝐴𝑉)
6 gsumzcl.f . 2 (𝜑𝐹:𝐴𝐵)
7 gsumzcl.c . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8 gsumzcl.w . . 3 (𝜑𝐹 finSupp 0 )
98fsuppimpd 8436 . 2 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
101, 2, 3, 4, 5, 6, 7, 9gsumzcl2 18524 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1629  wcel 2143  wss 3720   class class class wbr 4783  ran crn 5249  wf 6026  cfv 6030  (class class class)co 6791   finSupp cfsupp 8429  Basecbs 16070  0gc0g 16314   Σg cgsu 16315  Mndcmnd 17508  Cntzccntz 17961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-se 5208  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-n0 11493  df-z 11578  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13009  df-hash 13325  df-0g 16316  df-gsum 16317  df-mgm 17456  df-sgrp 17498  df-mnd 17509  df-cntz 17963
This theorem is referenced by:  gsumzsubmcl  18531  dprdssv  18629  dprdfadd  18633
  Copyright terms: Public domain W3C validator