MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumws1 Structured version   Visualization version   GIF version

Theorem gsumws1 17577
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
gsumws1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)

Proof of Theorem gsumws1
StepHypRef Expression
1 s1val 13568 . . 3 (𝑆𝐵 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
21oveq2d 6829 . 2 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = (𝐺 Σg {⟨0, 𝑆⟩}))
3 gsumwcl.b . . 3 𝐵 = (Base‘𝐺)
4 eqid 2760 . . 3 (+g𝐺) = (+g𝐺)
5 elfvdm 6381 . . . 4 (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base)
65, 3eleq2s 2857 . . 3 (𝑆𝐵𝐺 ∈ dom Base)
7 0nn0 11499 . . . . 5 0 ∈ ℕ0
8 nn0uz 11915 . . . . 5 0 = (ℤ‘0)
97, 8eleqtri 2837 . . . 4 0 ∈ (ℤ‘0)
109a1i 11 . . 3 (𝑆𝐵 → 0 ∈ (ℤ‘0))
11 0z 11580 . . . . . . 7 0 ∈ ℤ
12 f1osng 6338 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑆𝐵) → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
1311, 12mpan 708 . . . . . 6 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
14 f1of 6298 . . . . . 6 ({⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆} → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
1513, 14syl 17 . . . . 5 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
16 snssi 4484 . . . . 5 (𝑆𝐵 → {𝑆} ⊆ 𝐵)
1715, 16fssd 6218 . . . 4 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶𝐵)
18 fzsn 12576 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
1911, 18ax-mp 5 . . . . 5 (0...0) = {0}
2019feq2i 6198 . . . 4 ({⟨0, 𝑆⟩}:(0...0)⟶𝐵 ↔ {⟨0, 𝑆⟩}:{0}⟶𝐵)
2117, 20sylibr 224 . . 3 (𝑆𝐵 → {⟨0, 𝑆⟩}:(0...0)⟶𝐵)
223, 4, 6, 10, 21gsumval2 17481 . 2 (𝑆𝐵 → (𝐺 Σg {⟨0, 𝑆⟩}) = (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0))
23 fvsng 6611 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐵) → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2411, 23mpan 708 . . 3 (𝑆𝐵 → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2511, 24seq1i 13009 . 2 (𝑆𝐵 → (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0) = 𝑆)
262, 22, 253eqtrd 2798 1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {csn 4321  cop 4327  dom cdm 5266  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  0cc0 10128  0cn0 11484  cz 11569  cuz 11879  ...cfz 12519  seqcseq 12995  ⟨“cs1 13480  Basecbs 16059  +gcplusg 16143   Σg cgsu 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-s1 13488  df-0g 16304  df-gsum 16305
This theorem is referenced by:  gsumws2  17580  gsumccatsn  17581  gsumwspan  17584  frmdgsum  17600  frmdup2  17603  gsumwrev  17996  psgnunilem5  18114  psgnpmtr  18130  frgpup2  18389  mrsubcv  31714  gsumws3  39001  gsumws4  39002
  Copyright terms: Public domain W3C validator