Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumvsca2 Structured version   Visualization version   GIF version

Theorem gsumvsca2 29911
 Description: Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumvsca.b 𝐵 = (Base‘𝑊)
gsumvsca.g 𝐺 = (Scalar‘𝑊)
gsumvsca.z 0 = (0g𝑊)
gsumvsca.t · = ( ·𝑠𝑊)
gsumvsca.p + = (+g𝑊)
gsumvsca.k (𝜑𝐾 ⊆ (Base‘𝐺))
gsumvsca.a (𝜑𝐴 ∈ Fin)
gsumvsca.w (𝜑𝑊 ∈ SLMod)
gsumvsca2.n (𝜑𝑄𝐵)
gsumvsca2.c ((𝜑𝑘𝐴) → 𝑃𝐾)
Assertion
Ref Expression
gsumvsca2 (𝜑 → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
Distinct variable groups:   · ,𝑘   𝐴,𝑘   𝑘,𝑊   𝜑,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝐾   𝑄,𝑘
Allowed substitution hints:   𝑃(𝑘)   + (𝑘)   0 (𝑘)

Proof of Theorem gsumvsca2
Dummy variables 𝑒 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumvsca.a . 2 (𝜑𝐴 ∈ Fin)
2 ssid 3657 . . 3 𝐴𝐴
3 sseq1 3659 . . . . . . 7 (𝑎 = ∅ → (𝑎𝐴 ↔ ∅ ⊆ 𝐴))
43anbi2d 740 . . . . . 6 (𝑎 = ∅ → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
5 mpteq1 4770 . . . . . . . 8 (𝑎 = ∅ → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)))
65oveq2d 6706 . . . . . . 7 (𝑎 = ∅ → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))))
7 mpteq1 4770 . . . . . . . . 9 (𝑎 = ∅ → (𝑘𝑎𝑃) = (𝑘 ∈ ∅ ↦ 𝑃))
87oveq2d 6706 . . . . . . . 8 (𝑎 = ∅ → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)))
98oveq1d 6705 . . . . . . 7 (𝑎 = ∅ → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
106, 9eqeq12d 2666 . . . . . 6 (𝑎 = ∅ → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄)))
114, 10imbi12d 333 . . . . 5 (𝑎 = ∅ → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))))
12 sseq1 3659 . . . . . . 7 (𝑎 = 𝑒 → (𝑎𝐴𝑒𝐴))
1312anbi2d 740 . . . . . 6 (𝑎 = 𝑒 → ((𝜑𝑎𝐴) ↔ (𝜑𝑒𝐴)))
14 mpteq1 4770 . . . . . . . 8 (𝑎 = 𝑒 → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘𝑒 ↦ (𝑃 · 𝑄)))
1514oveq2d 6706 . . . . . . 7 (𝑎 = 𝑒 → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))))
16 mpteq1 4770 . . . . . . . . 9 (𝑎 = 𝑒 → (𝑘𝑎𝑃) = (𝑘𝑒𝑃))
1716oveq2d 6706 . . . . . . . 8 (𝑎 = 𝑒 → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘𝑒𝑃)))
1817oveq1d 6705 . . . . . . 7 (𝑎 = 𝑒 → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))
1915, 18eqeq12d 2666 . . . . . 6 (𝑎 = 𝑒 → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)))
2013, 19imbi12d 333 . . . . 5 (𝑎 = 𝑒 → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))))
21 sseq1 3659 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑎𝐴 ↔ (𝑒 ∪ {𝑧}) ⊆ 𝐴))
2221anbi2d 740 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)))
23 mpteq1 4770 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄)))
2423oveq2d 6706 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))))
25 mpteq1 4770 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑧}) → (𝑘𝑎𝑃) = (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃))
2625oveq2d 6706 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)))
2726oveq1d 6705 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))
2824, 27eqeq12d 2666 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑧}) → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄)))
2922, 28imbi12d 333 . . . . 5 (𝑎 = (𝑒 ∪ {𝑧}) → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
30 sseq1 3659 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐴𝐴𝐴))
3130anbi2d 740 . . . . . 6 (𝑎 = 𝐴 → ((𝜑𝑎𝐴) ↔ (𝜑𝐴𝐴)))
32 mpteq1 4770 . . . . . . . 8 (𝑎 = 𝐴 → (𝑘𝑎 ↦ (𝑃 · 𝑄)) = (𝑘𝐴 ↦ (𝑃 · 𝑄)))
3332oveq2d 6706 . . . . . . 7 (𝑎 = 𝐴 → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))))
34 mpteq1 4770 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑘𝑎𝑃) = (𝑘𝐴𝑃))
3534oveq2d 6706 . . . . . . . 8 (𝑎 = 𝐴 → (𝐺 Σg (𝑘𝑎𝑃)) = (𝐺 Σg (𝑘𝐴𝑃)))
3635oveq1d 6705 . . . . . . 7 (𝑎 = 𝐴 → ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
3733, 36eqeq12d 2666 . . . . . 6 (𝑎 = 𝐴 → ((𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄) ↔ (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄)))
3831, 37imbi12d 333 . . . . 5 (𝑎 = 𝐴 → (((𝜑𝑎𝐴) → (𝑊 Σg (𝑘𝑎 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑎𝑃)) · 𝑄)) ↔ ((𝜑𝐴𝐴) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))))
39 gsumvsca.w . . . . . . . . 9 (𝜑𝑊 ∈ SLMod)
40 gsumvsca2.n . . . . . . . . 9 (𝜑𝑄𝐵)
41 gsumvsca.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
42 gsumvsca.g . . . . . . . . . 10 𝐺 = (Scalar‘𝑊)
43 gsumvsca.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
44 eqid 2651 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
45 gsumvsca.z . . . . . . . . . 10 0 = (0g𝑊)
4641, 42, 43, 44, 45slmd0vs 29905 . . . . . . . . 9 ((𝑊 ∈ SLMod ∧ 𝑄𝐵) → ((0g𝐺) · 𝑄) = 0 )
4739, 40, 46syl2anc 694 . . . . . . . 8 (𝜑 → ((0g𝐺) · 𝑄) = 0 )
4847eqcomd 2657 . . . . . . 7 (𝜑0 = ((0g𝐺) · 𝑄))
49 mpt0 6059 . . . . . . . . 9 (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄)) = ∅
5049oveq2i 6701 . . . . . . . 8 (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = (𝑊 Σg ∅)
5145gsum0 17325 . . . . . . . 8 (𝑊 Σg ∅) = 0
5250, 51eqtri 2673 . . . . . . 7 (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = 0
53 mpt0 6059 . . . . . . . . . 10 (𝑘 ∈ ∅ ↦ 𝑃) = ∅
5453oveq2i 6701 . . . . . . . . 9 (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) = (𝐺 Σg ∅)
5544gsum0 17325 . . . . . . . . 9 (𝐺 Σg ∅) = (0g𝐺)
5654, 55eqtri 2673 . . . . . . . 8 (𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) = (0g𝐺)
5756oveq1i 6700 . . . . . . 7 ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄) = ((0g𝐺) · 𝑄)
5848, 52, 573eqtr4g 2710 . . . . . 6 (𝜑 → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
5958adantr 480 . . . . 5 ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ ∅ ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ ∅ ↦ 𝑃)) · 𝑄))
60 ssun1 3809 . . . . . . . . 9 𝑒 ⊆ (𝑒 ∪ {𝑧})
61 sstr2 3643 . . . . . . . . 9 (𝑒 ⊆ (𝑒 ∪ {𝑧}) → ((𝑒 ∪ {𝑧}) ⊆ 𝐴𝑒𝐴))
6260, 61ax-mp 5 . . . . . . . 8 ((𝑒 ∪ {𝑧}) ⊆ 𝐴𝑒𝐴)
6362anim2i 592 . . . . . . 7 ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝜑𝑒𝐴))
6463imim1i 63 . . . . . 6 (((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)))
6539ad2antrl 764 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ SLMod)
66 eqid 2651 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
6742slmdsrg 29888 . . . . . . . . . . . . 13 (𝑊 ∈ SLMod → 𝐺 ∈ SRing)
68 srgcmn 18554 . . . . . . . . . . . . 13 (𝐺 ∈ SRing → 𝐺 ∈ CMnd)
6965, 67, 683syl 18 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝐺 ∈ CMnd)
70 vex 3234 . . . . . . . . . . . . 13 𝑒 ∈ V
7170a1i 11 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ V)
72 simplrl 817 . . . . . . . . . . . . . 14 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝜑)
73 simprr 811 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑒 ∪ {𝑧}) ⊆ 𝐴)
7473unssad 3823 . . . . . . . . . . . . . . 15 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒𝐴)
7574sselda 3636 . . . . . . . . . . . . . 14 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑘𝐴)
76 gsumvsca.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ⊆ (Base‘𝐺))
7776adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐾 ⊆ (Base‘𝐺))
78 gsumvsca2.c . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑃𝐾)
7977, 78sseldd 3637 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃 ∈ (Base‘𝐺))
8072, 75, 79syl2anc 694 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑃 ∈ (Base‘𝐺))
81 eqid 2651 . . . . . . . . . . . . 13 (𝑘𝑒𝑃) = (𝑘𝑒𝑃)
8280, 81fmptd 6425 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘𝑒𝑃):𝑒⟶(Base‘𝐺))
83 simpll 805 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑒 ∈ Fin)
8472, 75, 78syl2anc 694 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑃𝐾)
85 fvexd 6241 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (0g𝐺) ∈ V)
8681, 83, 84, 85fsuppmptdm 8327 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑘𝑒𝑃) finSupp (0g𝐺))
8766, 44, 69, 71, 82, 86gsumcl 18362 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘𝑒𝑃)) ∈ (Base‘𝐺))
8873unssbd 3824 . . . . . . . . . . . . 13 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
89 vex 3234 . . . . . . . . . . . . . 14 𝑧 ∈ V
9089snss 4348 . . . . . . . . . . . . 13 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
9188, 90sylibr 224 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
9279ralrimiva 2995 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺))
9392ad2antrl 764 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺))
94 rspcsbela 4039 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝑃 ∈ (Base‘𝐺)) → 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺))
9591, 93, 94syl2anc 694 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺))
9640ad2antrl 764 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑄𝐵)
97 gsumvsca.p . . . . . . . . . . . 12 + = (+g𝑊)
98 eqid 2651 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
9941, 97, 42, 43, 66, 98slmdvsdir 29897 . . . . . . . . . . 11 ((𝑊 ∈ SLMod ∧ ((𝐺 Σg (𝑘𝑒𝑃)) ∈ (Base‘𝐺) ∧ 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
10065, 87, 95, 96, 99syl13anc 1368 . . . . . . . . . 10 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
101100adantr 480 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
102 nfcsb1v 3582 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝑃
10389a1i 11 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V)
104 simplr 807 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑒)
105 csbeq1a 3575 . . . . . . . . . . . 12 (𝑘 = 𝑧𝑃 = 𝑧 / 𝑘𝑃)
106102, 66, 98, 69, 83, 80, 103, 104, 95, 105gsumunsnf 18404 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) = ((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃))
107106oveq1d 6705 . . . . . . . . . 10 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄))
108107adantr 480 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄) = (((𝐺 Σg (𝑘𝑒𝑃))(+g𝐺)𝑧 / 𝑘𝑃) · 𝑄))
109 nfcv 2793 . . . . . . . . . . . . 13 𝑘 ·
110 nfcv 2793 . . . . . . . . . . . . 13 𝑘𝑄
111102, 109, 110nfov 6716 . . . . . . . . . . . 12 𝑘(𝑧 / 𝑘𝑃 · 𝑄)
112 slmdcmn 29886 . . . . . . . . . . . . 13 (𝑊 ∈ SLMod → 𝑊 ∈ CMnd)
11365, 112syl 17 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → 𝑊 ∈ CMnd)
11472, 39syl 17 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑊 ∈ SLMod)
11572, 40syl 17 . . . . . . . . . . . . 13 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → 𝑄𝐵)
11641, 42, 43, 66slmdvscl 29895 . . . . . . . . . . . . 13 ((𝑊 ∈ SLMod ∧ 𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵) → (𝑃 · 𝑄) ∈ 𝐵)
117114, 80, 115, 116syl3anc 1366 . . . . . . . . . . . 12 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ 𝑘𝑒) → (𝑃 · 𝑄) ∈ 𝐵)
11841, 42, 43, 66slmdvscl 29895 . . . . . . . . . . . . 13 ((𝑊 ∈ SLMod ∧ 𝑧 / 𝑘𝑃 ∈ (Base‘𝐺) ∧ 𝑄𝐵) → (𝑧 / 𝑘𝑃 · 𝑄) ∈ 𝐵)
11965, 95, 96, 118syl3anc 1366 . . . . . . . . . . . 12 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑧 / 𝑘𝑃 · 𝑄) ∈ 𝐵)
120105oveq1d 6705 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝑃 · 𝑄) = (𝑧 / 𝑘𝑃 · 𝑄))
121111, 41, 97, 113, 83, 117, 103, 104, 119, 120gsumunsnf 18404 . . . . . . . . . . 11 (((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)))
122121adantr 480 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)))
123 simpr 476 . . . . . . . . . . 11 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄))
124123oveq1d 6705 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) + (𝑧 / 𝑘𝑃 · 𝑄)) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
125122, 124eqtrd 2685 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = (((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) + (𝑧 / 𝑘𝑃 · 𝑄)))
126101, 108, 1253eqtr4rd 2696 . . . . . . . 8 ((((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴)) ∧ (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))
127126exp31 629 . . . . . . 7 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → ((𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
128127a2d 29 . . . . . 6 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
12964, 128syl5 34 . . . . 5 ((𝑒 ∈ Fin ∧ ¬ 𝑧𝑒) → (((𝜑𝑒𝐴) → (𝑊 Σg (𝑘𝑒 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝑒𝑃)) · 𝑄)) → ((𝜑 ∧ (𝑒 ∪ {𝑧}) ⊆ 𝐴) → (𝑊 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ (𝑒 ∪ {𝑧}) ↦ 𝑃)) · 𝑄))))
13011, 20, 29, 38, 59, 129findcard2s 8242 . . . 4 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄)))
131130imp 444 . . 3 ((𝐴 ∈ Fin ∧ (𝜑𝐴𝐴)) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
1322, 131mpanr2 720 . 2 ((𝐴 ∈ Fin ∧ 𝜑) → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
1331, 132mpancom 704 1 (𝜑 → (𝑊 Σg (𝑘𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘𝐴𝑃)) · 𝑄))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231  ⦋csb 3566   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147   Σg cgsu 16148  CMndccmn 18239  SRingcsrg 18551  SLModcslmd 29881 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-srg 18552  df-slmd 29882 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator