MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval Structured version   Visualization version   GIF version

Theorem gsumval 17478
Description: Expand out the substitutions in df-gsum 16310. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.o 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
gsumval.w (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
gsumval.g (𝜑𝐺𝑉)
gsumval.a (𝜑𝐴𝑋)
gsumval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumval (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝑓,𝑚,𝑛,𝑥,𝜑   𝑓,𝐹,𝑚,𝑛,𝑥   𝑓,𝐺,𝑚,𝑛,𝑥   + ,𝑠,𝑡,𝑥   𝑓,𝑂,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑠)   𝐴(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝐵(𝑓,𝑚,𝑛)   + (𝑓,𝑚,𝑛)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑡,𝑠)   𝑉(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑊(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑋(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   0 (𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)

Proof of Theorem gsumval
StepHypRef Expression
1 gsumval.b . 2 𝐵 = (Base‘𝐺)
2 gsumval.z . 2 0 = (0g𝐺)
3 gsumval.p . 2 + = (+g𝐺)
4 gsumval.o . 2 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
5 gsumval.w . 2 (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
6 gsumval.g . 2 (𝜑𝐺𝑉)
7 gsumval.f . . 3 (𝜑𝐹:𝐴𝐵)
8 gsumval.a . . 3 (𝜑𝐴𝑋)
9 fvex 6342 . . . . 5 (Base‘𝐺) ∈ V
101, 9eqeltri 2845 . . . 4 𝐵 ∈ V
1110a1i 11 . . 3 (𝜑𝐵 ∈ V)
12 fex2 7267 . . 3 ((𝐹:𝐴𝐵𝐴𝑋𝐵 ∈ V) → 𝐹 ∈ V)
137, 8, 11, 12syl3anc 1475 . 2 (𝜑𝐹 ∈ V)
14 fdm 6191 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
157, 14syl 17 . 2 (𝜑 → dom 𝐹 = 𝐴)
161, 2, 3, 4, 5, 6, 13, 15gsumvalx 17477 1 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wex 1851  wcel 2144  wral 3060  wrex 3061  {crab 3064  Vcvv 3349  cdif 3718  wss 3721  ifcif 4223  ccnv 5248  dom cdm 5249  ran crn 5250  cima 5252  ccom 5253  cio 5992  wf 6027  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6792  1c1 10138  cuz 11887  ...cfz 12532  seqcseq 13007  chash 13320  Basecbs 16063  +gcplusg 16148  0gc0g 16307   Σg cgsu 16308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-seq 13008  df-gsum 16310
This theorem is referenced by:  gsumress  17483  gsumval1  17484  gsumval2a  17486  gsumval3a  18510
  Copyright terms: Public domain W3C validator