Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsub Structured version   Visualization version   GIF version

Theorem gsumsub 18555
 Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumsub.b 𝐵 = (Base‘𝐺)
gsumsub.z 0 = (0g𝐺)
gsumsub.m = (-g𝐺)
gsumsub.g (𝜑𝐺 ∈ Abel)
gsumsub.a (𝜑𝐴𝑉)
gsumsub.f (𝜑𝐹:𝐴𝐵)
gsumsub.h (𝜑𝐻:𝐴𝐵)
gsumsub.fn (𝜑𝐹 finSupp 0 )
gsumsub.hn (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsumsub (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))

Proof of Theorem gsumsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsub.b . . . 4 𝐵 = (Base‘𝐺)
2 gsumsub.z . . . 4 0 = (0g𝐺)
3 eqid 2771 . . . 4 (+g𝐺) = (+g𝐺)
4 gsumsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
5 ablcmn 18406 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . 4 (𝜑𝐺 ∈ CMnd)
7 gsumsub.a . . . 4 (𝜑𝐴𝑉)
8 gsumsub.f . . . 4 (𝜑𝐹:𝐴𝐵)
9 eqid 2771 . . . . . . 7 (invg𝐺) = (invg𝐺)
10 ablgrp 18405 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
114, 10syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
121, 9, 11grpinvf1o 17693 . . . . . 6 (𝜑 → (invg𝐺):𝐵1-1-onto𝐵)
13 f1of 6279 . . . . . 6 ((invg𝐺):𝐵1-1-onto𝐵 → (invg𝐺):𝐵𝐵)
1412, 13syl 17 . . . . 5 (𝜑 → (invg𝐺):𝐵𝐵)
15 gsumsub.h . . . . 5 (𝜑𝐻:𝐴𝐵)
16 fco 6199 . . . . 5 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1714, 15, 16syl2anc 573 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
18 gsumsub.fn . . . 4 (𝜑𝐹 finSupp 0 )
192fvexi 6345 . . . . . 6 0 ∈ V
2019a1i 11 . . . . 5 (𝜑0 ∈ V)
211fvexi 6345 . . . . . 6 𝐵 ∈ V
2221a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
23 gsumsub.hn . . . . 5 (𝜑𝐻 finSupp 0 )
242, 9grpinvid 17684 . . . . . 6 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2511, 24syl 17 . . . . 5 (𝜑 → ((invg𝐺)‘ 0 ) = 0 )
2620, 15, 14, 7, 22, 23, 25fsuppco2 8468 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻) finSupp 0 )
271, 2, 3, 6, 7, 8, 17, 18, 26gsumadd 18530 . . 3 (𝜑 → (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
281, 2, 9, 4, 7, 15, 23gsuminv 18553 . . . 4 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
2928oveq2d 6812 . . 3 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
3027, 29eqtrd 2805 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
318ffvelrnda 6504 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3215ffvelrnda 6504 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
33 gsumsub.m . . . . . . 7 = (-g𝐺)
341, 3, 9, 33grpsubval 17673 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3531, 32, 34syl2anc 573 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3635mpteq2dva 4879 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
378feqmptd 6393 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3815feqmptd 6393 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
397, 31, 32, 37, 38offval2 7065 . . . 4 (𝜑 → (𝐹𝑓 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
40 fvexd 6346 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
4114feqmptd 6393 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
42 fveq2 6333 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4332, 38, 41, 42fmptco 6542 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
447, 31, 40, 37, 43offval2 7065 . . . 4 (𝜑 → (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4536, 39, 443eqtr4d 2815 . . 3 (𝜑 → (𝐹𝑓 𝐻) = (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻)))
4645oveq2d 6812 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))))
471, 2, 6, 7, 8, 18gsumcl 18523 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
481, 2, 6, 7, 15, 23gsumcl 18523 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵)
491, 3, 9, 33grpsubval 17673 . . 3 (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5047, 48, 49syl2anc 573 . 2 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5130, 46, 503eqtr4d 2815 1 (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351   class class class wbr 4787   ↦ cmpt 4864   ∘ ccom 5254  ⟶wf 6026  –1-1-onto→wf1o 6029  ‘cfv 6030  (class class class)co 6796   ∘𝑓 cof 7046   finSupp cfsupp 8435  Basecbs 16064  +gcplusg 16149  0gc0g 16308   Σg cgsu 16309  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  CMndccmn 18400  Abelcabl 18401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403 This theorem is referenced by:  gsummptfssub  18556  tsmsxplem2  22177
 Copyright terms: Public domain W3C validator