MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Visualization version   GIF version

Theorem gsumpropd2lem 17474
Description: Lemma for gsumpropd2 17475. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
gsumprop2dlem.1 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
gsumprop2dlem.2 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
Assertion
Ref Expression
gsumpropd2lem (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑡,𝑠,𝐹   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2lem
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
21adantr 472 . . . . . 6 ((𝜑𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.e . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2762 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
53oveqrspc2v 6836 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
65oveqrspc2v 6836 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
76ancom2s 879 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
87eqeq1d 2762 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
94, 8anbi12d 749 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
109anassrs 683 . . . . . 6 (((𝜑𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
112, 10raleqbidva 3293 . . . . 5 ((𝜑𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
121, 11rabeqbidva 3336 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
1312sseq2d 3774 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
14 eqidd 2761 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
1514, 1, 3grpidpropd 17462 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
16 simprl 811 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
17 gsumpropd2.r . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1817ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
19 gsumpropd2.n . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐹)
2019ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
21 simpr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
22 simplrr 820 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
2321, 22eleqtrrd 2842 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
24 fvelrn 6515 . . . . . . . . . . . . 13 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
2520, 23, 24syl2anc 696 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
2618, 25sseldd 3745 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
27 gsumpropd2.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
2827adantlr 753 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
293adantlr 753 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
3016, 26, 28, 29seqfeq4 13044 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3130eqeq2d 2770 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3231anassrs 683 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3332pm5.32da 676 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3433rexbidva 3187 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3534exbidv 1999 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635iotabidv 6033 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3712difeq2d 3871 . . . . . . . . . . . . . . 15 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
3837imaeq2d 5624 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
4138, 39, 403eqtr4g 2819 . . . . . . . . . . . . 13 (𝜑𝐴 = 𝐵)
4241fveq2d 6356 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342fveq2d 6356 . . . . . . . . . . 11 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
4443adantr 472 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
45 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (♯‘𝐵) ∈ (ℤ‘1))
4617ad3antrrr 768 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺))
47 f1ofun 6300 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑓)
4847ad3antlr 769 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝑓)
49 simpr 479 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
50 f1odm 6302 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
5150ad3antlr 769 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐴)))
5242oveq2d 6829 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5352ad3antrrr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5451, 53eqtrd 2794 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵)))
5549, 54eleqtrrd 2842 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ dom 𝑓)
56 fvco 6436 . . . . . . . . . . . . . . 15 ((Fun 𝑓𝑎 ∈ dom 𝑓) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5748, 55, 56syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5819ad3antrrr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝐹)
59 difpreima 6506 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐹 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6019, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6139, 60syl5eq 2806 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
62 difss 3880 . . . . . . . . . . . . . . . . . . 19 ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ⊆ (𝐹 “ V)
6361, 62syl6eqss 3796 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (𝐹 “ V))
64 dfdm4 5471 . . . . . . . . . . . . . . . . . . 19 dom 𝐹 = ran 𝐹
65 dfrn4 5753 . . . . . . . . . . . . . . . . . . 19 ran 𝐹 = (𝐹 “ V)
6664, 65eqtri 2782 . . . . . . . . . . . . . . . . . 18 dom 𝐹 = (𝐹 “ V)
6763, 66syl6sseqr 3793 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ dom 𝐹)
6867ad3antrrr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝐴 ⊆ dom 𝐹)
69 f1of 6298 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
7069ad3antlr 769 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
7149, 53eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐴)))
7270, 71ffvelrnd 6523 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ 𝐴)
7368, 72sseldd 3745 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ dom 𝐹)
74 fvelrn 6515 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ (𝑓𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7558, 73, 74syl2anc 696 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7657, 75eqeltrd 2839 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ ran 𝐹)
7746, 76sseldd 3745 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ (Base‘𝐺))
78 simpll 807 . . . . . . . . . . . . 13 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → 𝜑)
7927caovclg 6991 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8078, 79sylan 489 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
8178, 5sylan 489 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
8245, 77, 80, 81seqfeq4 13044 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
83 simpr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ (ℤ‘1))
84 1z 11599 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
85 seqfn 13007 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1))
86 fndm 6151 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1))
8784, 85, 86mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1)
8887eleq2i 2831 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
8983, 88sylnibr 318 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)))
90 ndmfv 6379 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
92 seqfn 13007 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1))
93 fndm 6151 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1))
9484, 92, 93mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1)
9594eleq2i 2831 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
9683, 95sylnibr 318 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)))
97 ndmfv 6379 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9896, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9991, 98eqtr4d 2797 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10099adantlr 753 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10182, 100pm2.61dan 867 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10244, 101eqtrd 2794 . . . . . . . . 9 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
103102eqeq2d 2770 . . . . . . . 8 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))
104103pm5.32da 676 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
105 f1oeq2 6289 . . . . . . . . . 10 ((1...(♯‘𝐴)) = (1...(♯‘𝐵)) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐴))
10652, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐴))
107 f1oeq3 6290 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
10841, 107syl 17 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
109106, 108bitrd 268 . . . . . . . 8 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
110109anbi1d 743 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
111104, 110bitrd 268 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
112111exbidv 1999 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ ∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
113112iotabidv 6033 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
11436, 113ifeq12d 4250 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))))
11513, 15, 114ifbieq12d 4257 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
116 eqid 2760 . . 3 (Base‘𝐺) = (Base‘𝐺)
117 eqid 2760 . . 3 (0g𝐺) = (0g𝐺)
118 eqid 2760 . . 3 (+g𝐺) = (+g𝐺)
119 eqid 2760 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
12039a1i 11 . . 3 (𝜑𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
121 gsumpropd2.g . . 3 (𝜑𝐺𝑊)
122 gsumpropd2.f . . 3 (𝜑𝐹𝑉)
123 eqidd 2761 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
124116, 117, 118, 119, 120, 121, 122, 123gsumvalx 17471 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))))
125 eqid 2760 . . 3 (Base‘𝐻) = (Base‘𝐻)
126 eqid 2760 . . 3 (0g𝐻) = (0g𝐻)
127 eqid 2760 . . 3 (+g𝐻) = (+g𝐻)
128 eqid 2760 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
12940a1i 11 . . 3 (𝜑𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
130 gsumpropd2.h . . 3 (𝜑𝐻𝑋)
131125, 126, 127, 128, 129, 130, 122, 123gsumvalx 17471 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
132115, 124, 1313eqtr4d 2804 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  wss 3715  c0 4058  ifcif 4230  ccnv 5265  dom cdm 5266  ran crn 5267  cima 5269  ccom 5270  cio 6010  Fun wfun 6043   Fn wfn 6044  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  1c1 10129  cz 11569  cuz 11879  ...cfz 12519  seqcseq 12995  chash 13311  Basecbs 16059  +gcplusg 16143  0gc0g 16302   Σg cgsu 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-0g 16304  df-gsum 16305
This theorem is referenced by:  gsumpropd2  17475
  Copyright terms: Public domain W3C validator