![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumply1subr | Structured version Visualization version GIF version |
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
Ref | Expression |
---|---|
subrgply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
subrgply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
subrgply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
subrgply1.b | ⊢ 𝐵 = (Base‘𝑈) |
gsumply1subr.s | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
gsumply1subr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumply1subr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
gsumply1subr | ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumply1subr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | gsumply1subr.s | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | subrgply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
4 | subrgply1.h | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | subrgply1.u | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
6 | subrgply1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 3, 4, 5, 6 | subrgply1 19805 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
8 | subrgsubg 18988 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
9 | subgsubm 17817 | . . . . 5 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆)) |
11 | 2, 7, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝑆)) |
12 | gsumply1subr.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
13 | eqid 2760 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
14 | 1, 11, 12, 13 | gsumsubm 17574 | . 2 ⊢ (𝜑 → (𝑆 Σg 𝐹) = ((𝑆 ↾s 𝐵) Σg 𝐹)) |
15 | fex 6653 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
16 | 12, 1, 15 | syl2anc 696 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | ovexd 6843 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ V) | |
18 | fvex 6362 | . . . . 5 ⊢ (Poly1‘𝐻) ∈ V | |
19 | 5, 18 | eqeltri 2835 | . . . 4 ⊢ 𝑈 ∈ V |
20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
21 | eqid 2760 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
22 | 6 | oveq2i 6824 | . . . . 5 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s (Base‘𝑈)) |
23 | 3, 4, 5, 21, 2, 22 | ressply1bas 19801 | . . . 4 ⊢ (𝜑 → (Base‘𝑈) = (Base‘(𝑆 ↾s 𝐵))) |
24 | 23 | eqcomd 2766 | . . 3 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = (Base‘𝑈)) |
25 | 13 | subrgring 18985 | . . . . 5 ⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
26 | 7, 25 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (𝑆 ↾s 𝐵) ∈ Ring) |
27 | ringmgm 18757 | . . . 4 ⊢ ((𝑆 ↾s 𝐵) ∈ Ring → (𝑆 ↾s 𝐵) ∈ Mgm) | |
28 | 2, 26, 27 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑆 ↾s 𝐵) ∈ Mgm) |
29 | simpl 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝜑) | |
30 | 3, 4, 5, 6, 2, 13 | ressply1bas 19801 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = (Base‘(𝑆 ↾s 𝐵))) |
31 | 30 | eqcomd 2766 | . . . . . . . . 9 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝐵)) = 𝐵) |
32 | 31 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝜑 → (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑠 ∈ 𝐵)) |
33 | 32 | biimpcd 239 | . . . . . . 7 ⊢ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑠 ∈ 𝐵)) |
34 | 33 | adantr 472 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑠 ∈ 𝐵)) |
35 | 34 | impcom 445 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑠 ∈ 𝐵) |
36 | 31 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝜑 → (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) ↔ 𝑡 ∈ 𝐵)) |
37 | 36 | biimpcd 239 | . . . . . . 7 ⊢ (𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)) → (𝜑 → 𝑡 ∈ 𝐵)) |
38 | 37 | adantl 473 | . . . . . 6 ⊢ ((𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵))) → (𝜑 → 𝑡 ∈ 𝐵)) |
39 | 38 | impcom 445 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → 𝑡 ∈ 𝐵) |
40 | 3, 4, 5, 6, 2, 13 | ressply1add 19802 | . . . . 5 ⊢ ((𝜑 ∧ (𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
41 | 29, 35, 39, 40 | syl12anc 1475 | . . . 4 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘𝑈)𝑡) = (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡)) |
42 | 41 | eqcomd 2766 | . . 3 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆 ↾s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆 ↾s 𝐵)))) → (𝑠(+g‘(𝑆 ↾s 𝐵))𝑡) = (𝑠(+g‘𝑈)𝑡)) |
43 | ffun 6209 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
44 | 12, 43 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
45 | frn 6214 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
46 | 12, 45 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
47 | 46, 30 | sseqtrd 3782 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆 ↾s 𝐵))) |
48 | 16, 17, 20, 24, 28, 42, 44, 47 | gsummgmpropd 17476 | . 2 ⊢ (𝜑 → ((𝑆 ↾s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹)) |
49 | 14, 48 | eqtrd 2794 | 1 ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ran crn 5267 Fun wfun 6043 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 ↾s cress 16060 +gcplusg 16143 Σg cgsu 16303 Mgmcmgm 17441 SubMndcsubmnd 17535 SubGrpcsubg 17789 Ringcrg 18747 SubRingcsubrg 18978 Poly1cpl1 19749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-tset 16162 df-ple 16163 df-0g 16304 df-gsum 16305 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-mulg 17742 df-subg 17792 df-ghm 17859 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-subrg 18980 df-psr 19558 df-mpl 19560 df-opsr 19562 df-psr1 19752 df-ply1 19754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |