Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumnunsn Structured version   Visualization version   GIF version

Theorem gsumnunsn 30946
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
gsumnunsn.a + = (+g𝑀)
gsumnunsn.l (𝜑𝐶𝐾)
gsumnunsn.c ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
Assertion
Ref Expression
gsumnunsn (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐵(𝑘)   + (𝑘)   𝑀(𝑘)

Proof of Theorem gsumnunsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
2 seqp1 13031 . . 3 (𝑃 ∈ (ℤ𝑁) → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
31, 2syl 17 . 2 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
4 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
5 gsumnunsn.a . . 3 + = (+g𝑀)
6 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
7 peano2uz 11955 . . . 4 (𝑃 ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (ℤ𝑁))
81, 7syl 17 . . 3 (𝜑 → (𝑃 + 1) ∈ (ℤ𝑁))
9 gsumncl.b . . . . . 6 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
109adantlr 753 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
11 gsumnunsn.c . . . . . . 7 ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
1211adantlr 753 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
13 gsumnunsn.l . . . . . . 7 (𝜑𝐶𝐾)
1413ad2antrr 764 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐶𝐾)
1512, 14eqeltrd 2840 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵𝐾)
16 elfzp1 12605 . . . . . . 7 (𝑃 ∈ (ℤ𝑁) → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
171, 16syl 17 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
1817biimpa 502 . . . . 5 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))
1910, 15, 18mpjaodan 862 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → 𝐵𝐾)
20 eqid 2761 . . . 4 (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)
2119, 20fmptd 6550 . . 3 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵):(𝑁...(𝑃 + 1))⟶𝐾)
224, 5, 6, 8, 21gsumval2 17502 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)))
23 eqid 2761 . . . . . 6 (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)
249, 23fmptd 6550 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
254, 5, 6, 1, 24gsumval2 17502 . . . 4 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
26 fzssp1 12598 . . . . . . . 8 (𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1))
27 resmpt 5608 . . . . . . . 8 ((𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)
2928fveq1i 6355 . . . . . 6 (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖)
30 fvres 6370 . . . . . . 7 (𝑖 ∈ (𝑁...𝑃) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
3130adantl 473 . . . . . 6 ((𝜑𝑖 ∈ (𝑁...𝑃)) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
3229, 31syl5reqr 2810 . . . . 5 ((𝜑𝑖 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖))
331, 32seqfveq 13040 . . . 4 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
3425, 33eqtr4d 2798 . . 3 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃))
35 eqidd 2762 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))
36 eluzfz2 12563 . . . . . 6 ((𝑃 + 1) ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
378, 36syl 17 . . . . 5 (𝜑 → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
3835, 11, 37, 13fvmptd 6452 . . . 4 (𝜑 → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)) = 𝐶)
3938eqcomd 2767 . . 3 (𝜑𝐶 = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))
4034, 39oveq12d 6833 . 2 (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
413, 22, 403eqtr4d 2805 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2140  wss 3716  cmpt 4882  cres 5269  cfv 6050  (class class class)co 6815  1c1 10150   + caddc 10152  cuz 11900  ...cfz 12540  seqcseq 13016  Basecbs 16080  +gcplusg 16164   Σg cgsu 16324  Mndcmnd 17516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-seq 13017  df-0g 16325  df-gsum 16326
This theorem is referenced by:  signstfvn  30977
  Copyright terms: Public domain W3C validator