![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres | Structured version Visualization version GIF version |
Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
Ref | Expression |
---|---|
gsummptres.0 | ⊢ 𝐵 = (Base‘𝐺) |
gsummptres.1 | ⊢ 0 = (0g‘𝐺) |
gsummptres.2 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptres.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptres.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
gsummptres.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) |
Ref | Expression |
---|---|
gsummptres | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptres.0 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptres.1 | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2771 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsummptres.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsummptres.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | gsummptres.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
7 | eqid 2771 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | 2 | fvexi 6345 | . . . . 5 ⊢ 0 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
10 | 7, 5, 6, 9 | fsuppmptdm 8446 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
11 | inindif 29691 | . . . 4 ⊢ ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅ | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐴 ∩ 𝐷) ∩ (𝐴 ∖ 𝐷)) = ∅) |
13 | inundif 4189 | . . . . 5 ⊢ ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) = 𝐴 | |
14 | 13 | eqcomi 2780 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷)) |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐷) ∪ (𝐴 ∖ 𝐷))) |
16 | 1, 2, 3, 4, 5, 6, 10, 12, 15 | gsumsplit2 18536 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)))) |
17 | gsummptres.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) | |
18 | 17 | mpteq2dva 4879 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) |
19 | 18 | oveq2d 6812 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 ))) |
20 | cmnmnd 18415 | . . . . . . 7 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
21 | 4, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
22 | diffi 8352 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐷) ∈ Fin) | |
23 | 5, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ∈ Fin) |
24 | 2 | gsumz 17582 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
25 | 21, 23, 24 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 0 )) = 0 ) |
26 | 19, 25 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = 0 ) |
27 | 26 | oveq2d 6812 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 )) |
28 | infi 8344 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐷) ∈ Fin) | |
29 | 5, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ 𝐷) ∈ Fin) |
30 | inss1 3981 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐷) ⊆ 𝐴 | |
31 | 30 | sseli 3748 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) → 𝑥 ∈ 𝐴) |
32 | 31, 6 | sylan2 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐷)) → 𝐶 ∈ 𝐵) |
33 | 32 | ralrimiva 3115 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 ∈ 𝐵) |
34 | 1, 4, 29, 33 | gsummptcl 18573 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) |
35 | 1, 3, 2 | mndrid 17520 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
36 | 21, 34, 35 | syl2anc 573 | . . 3 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
37 | 27, 36 | eqtrd 2805 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
38 | 16, 37 | eqtrd 2805 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∖ cdif 3720 ∪ cun 3721 ∩ cin 3722 ∅c0 4063 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 Fincfn 8113 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Σg cgsu 16309 Mndcmnd 17502 CMndccmn 18400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-cntz 17957 df-cmn 18402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |