Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres Structured version   Visualization version   GIF version

Theorem gsummptres 30124
 Description: Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
gsummptres.0 𝐵 = (Base‘𝐺)
gsummptres.1 0 = (0g𝐺)
gsummptres.2 (𝜑𝐺 ∈ CMnd)
gsummptres.3 (𝜑𝐴 ∈ Fin)
gsummptres.4 ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptres.5 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
Assertion
Ref Expression
gsummptres (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   0 (𝑥)

Proof of Theorem gsummptres
StepHypRef Expression
1 gsummptres.0 . . 3 𝐵 = (Base‘𝐺)
2 gsummptres.1 . . 3 0 = (0g𝐺)
3 eqid 2771 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres.2 . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres.3 . . 3 (𝜑𝐴 ∈ Fin)
6 gsummptres.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 eqid 2771 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82fvexi 6345 . . . . 5 0 ∈ V
98a1i 11 . . . 4 (𝜑0 ∈ V)
107, 5, 6, 9fsuppmptdm 8446 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
11 inindif 29691 . . . 4 ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝐴𝐷) ∩ (𝐴𝐷)) = ∅)
13 inundif 4189 . . . . 5 ((𝐴𝐷) ∪ (𝐴𝐷)) = 𝐴
1413eqcomi 2780 . . . 4 𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷))
1514a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐷) ∪ (𝐴𝐷)))
161, 2, 3, 4, 5, 6, 10, 12, 15gsumsplit2 18536 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))))
17 gsummptres.5 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )
1817mpteq2dva 4879 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴𝐷) ↦ 𝐶) = (𝑥 ∈ (𝐴𝐷) ↦ 0 ))
1918oveq2d 6812 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )))
20 cmnmnd 18415 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
214, 20syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
22 diffi 8352 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
235, 22syl 17 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ Fin)
242gsumz 17582 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝐷) ∈ Fin) → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2521, 23, 24syl2anc 573 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 0 )) = 0 )
2619, 25eqtrd 2805 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = 0 )
2726oveq2d 6812 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ))
28 infi 8344 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐷) ∈ Fin)
295, 28syl 17 . . . . 5 (𝜑 → (𝐴𝐷) ∈ Fin)
30 inss1 3981 . . . . . . . 8 (𝐴𝐷) ⊆ 𝐴
3130sseli 3748 . . . . . . 7 (𝑥 ∈ (𝐴𝐷) → 𝑥𝐴)
3231, 6sylan2 580 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶𝐵)
3332ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴𝐷)𝐶𝐵)
341, 4, 29, 33gsummptcl 18573 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵)
351, 3, 2mndrid 17520 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3621, 34, 35syl2anc 573 . . 3 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3727, 36eqtrd 2805 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
3816, 37eqtrd 2805 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ∖ cdif 3720   ∪ cun 3721   ∩ cin 3722  ∅c0 4063   ↦ cmpt 4864  ‘cfv 6030  (class class class)co 6796  Fincfn 8113  Basecbs 16064  +gcplusg 16149  0gc0g 16308   Σg cgsu 16309  Mndcmnd 17502  CMndccmn 18400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-cntz 17957  df-cmn 18402 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator