Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fz Structured version   Visualization version   GIF version

Theorem gsummptnn0fz 18574
 Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fz.k 𝑘𝜑
gsummptnn0fz.b 𝐵 = (Base‘𝐺)
gsummptnn0fz.0 0 = (0g𝐺)
gsummptnn0fz.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fz.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
gsummptnn0fz.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fz.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
gsummptnn0fz (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Distinct variable groups:   𝐵,𝑘   𝑆,𝑘   0 ,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)

Proof of Theorem gsummptnn0fz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummptnn0fz.u . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
2 nfv 1984 . . . . 5 𝑥(𝑆 < 𝑘𝐶 = 0 )
3 nfv 1984 . . . . . 6 𝑘 𝑆 < 𝑥
4 nfcsb1v 3682 . . . . . . 7 𝑘𝑥 / 𝑘𝐶
54nfeq1 2908 . . . . . 6 𝑘𝑥 / 𝑘𝐶 = 0
63, 5nfim 1966 . . . . 5 𝑘(𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )
7 breq2 4800 . . . . . 6 (𝑘 = 𝑥 → (𝑆 < 𝑘𝑆 < 𝑥))
8 csbeq1a 3675 . . . . . . 7 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
98eqeq1d 2754 . . . . . 6 (𝑘 = 𝑥 → (𝐶 = 0𝑥 / 𝑘𝐶 = 0 ))
107, 9imbi12d 333 . . . . 5 (𝑘 = 𝑥 → ((𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
112, 6, 10cbvral 3298 . . . 4 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
121, 11sylib 208 . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 simpr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
14 gsummptnn0fz.f . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1514anim2i 594 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝜑) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
1615ancoms 468 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
17 rspcsbela 4141 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1816, 17syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
1913, 18jca 555 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
2019adantr 472 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
21 eqid 2752 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
2221fvmpts 6439 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2320, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
24 simpr 479 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → 𝑥 / 𝑘𝐶 = 0 )
2523, 24eqtrd 2786 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
2625ex 449 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑥 / 𝑘𝐶 = 0 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
2726imim2d 57 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2827ralimdva 3092 . . 3 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2912, 28mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
30 gsummptnn0fz.b . . 3 𝐵 = (Base‘𝐺)
31 gsummptnn0fz.0 . . 3 0 = (0g𝐺)
32 gsummptnn0fz.g . . 3 (𝜑𝐺 ∈ CMnd)
3321fmpt 6536 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3414, 33sylib 208 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
35 fvex 6354 . . . . . . 7 (Base‘𝐺) ∈ V
3630, 35eqeltri 2827 . . . . . 6 𝐵 ∈ V
37 nn0ex 11482 . . . . . 6 0 ∈ V
3836, 37pm3.2i 470 . . . . 5 (𝐵 ∈ V ∧ ℕ0 ∈ V)
39 elmapg 8028 . . . . 5 ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
4038, 39mp1i 13 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
4134, 40mpbird 247 . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0))
42 gsummptnn0fz.s . . 3 (𝜑𝑆 ∈ ℕ0)
43 fz0ssnn0 12620 . . . . 5 (0...𝑆) ⊆ ℕ0
44 resmpt 5599 . . . . 5 ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶))
4543, 44ax-mp 5 . . . 4 ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)
4645eqcomi 2761 . . 3 (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆))
4730, 31, 32, 41, 42, 46fsfnn0gsumfsffz 18571 . 2 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))))
4829, 47mpd 15 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624  Ⅎwnf 1849   ∈ wcel 2131  ∀wral 3042  Vcvv 3332  ⦋csb 3666   ⊆ wss 3707   class class class wbr 4796   ↦ cmpt 4873   ↾ cres 5260  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805   ↑𝑚 cmap 8015  0cc0 10120   < clt 10258  ℕ0cn0 11476  ...cfz 12511  Basecbs 16051  0gc0g 16294   Σg cgsu 16295  CMndccmn 18385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-0g 16296  df-gsum 16297  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-cntz 17942  df-cmn 18387 This theorem is referenced by:  gsummptnn0fzv  18575  gsummoncoe1  19868  pmatcollpwfi  20781
 Copyright terms: Public domain W3C validator