Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzcl Structured version   Visualization version   GIF version

Theorem gsummptfzcl 18588
 Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsummptfzcl.b 𝐵 = (Base‘𝐺)
gsummptfzcl.g (𝜑𝐺 ∈ Mnd)
gsummptfzcl.n (𝜑𝑁 ∈ (ℤ𝑀))
gsummptfzcl.i (𝜑𝐼 = (𝑀...𝑁))
gsummptfzcl.e (𝜑 → ∀𝑖𝐼 𝑋𝐵)
Assertion
Ref Expression
gsummptfzcl (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
Distinct variable groups:   𝑖,𝐼   𝐵,𝑖
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑀(𝑖)   𝑁(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptfzcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummptfzcl.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2760 . . 3 (+g𝐺) = (+g𝐺)
3 gsummptfzcl.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummptfzcl.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 gsummptfzcl.e . . . 4 (𝜑 → ∀𝑖𝐼 𝑋𝐵)
6 eqid 2760 . . . . . 6 (𝑖𝐼𝑋) = (𝑖𝐼𝑋)
76fmpt 6545 . . . . 5 (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):𝐼𝐵)
8 gsummptfzcl.i . . . . . 6 (𝜑𝐼 = (𝑀...𝑁))
98feq2d 6192 . . . . 5 (𝜑 → ((𝑖𝐼𝑋):𝐼𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
107, 9syl5bb 272 . . . 4 (𝜑 → (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
115, 10mpbid 222 . . 3 (𝜑 → (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 11gsumval2 17501 . 2 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) = (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁))
135adantr 472 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ∀𝑖𝐼 𝑋𝐵)
1413, 7sylib 208 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑖𝐼𝑋):𝐼𝐵)
158eqcomd 2766 . . . . . 6 (𝜑 → (𝑀...𝑁) = 𝐼)
1615eleq2d 2825 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝐼))
1716biimpa 502 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐼)
1814, 17ffvelrnd 6524 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑖𝐼𝑋)‘𝑥) ∈ 𝐵)
193adantr 472 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
20 simprl 811 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
21 simprr 813 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
221, 2mndcl 17522 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2319, 20, 21, 22syl3anc 1477 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
244, 18, 23seqcl 13035 . 2 (𝜑 → (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁) ∈ 𝐵)
2512, 24eqeltrd 2839 1 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050   ↦ cmpt 4881  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℤ≥cuz 11899  ...cfz 12539  seqcseq 13015  Basecbs 16079  +gcplusg 16163   Σg cgsu 16323  Mndcmnd 17515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-0g 16324  df-gsum 16325  df-mgm 17463  df-sgrp 17505  df-mnd 17516 This theorem is referenced by:  m2detleiblem2  20656
 Copyright terms: Public domain W3C validator