![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfzcl | Structured version Visualization version GIF version |
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
Ref | Expression |
---|---|
gsummptfzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsummptfzcl.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
gsummptfzcl.i | ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) |
gsummptfzcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzcl | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | gsummptfzcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | gsummptfzcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | gsummptfzcl.e | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) | |
6 | eqid 2760 | . . . . . 6 ⊢ (𝑖 ∈ 𝐼 ↦ 𝑋) = (𝑖 ∈ 𝐼 ↦ 𝑋) | |
7 | 6 | fmpt 6545 | . . . . 5 ⊢ (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
8 | gsummptfzcl.i | . . . . . 6 ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) | |
9 | 8 | feq2d 6192 | . . . . 5 ⊢ (𝜑 → ((𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
10 | 7, 9 | syl5bb 272 | . . . 4 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
11 | 5, 10 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
12 | 1, 2, 3, 4, 11 | gsumval2 17501 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁)) |
13 | 5 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
14 | 13, 7 | sylib 208 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
15 | 8 | eqcomd 2766 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) = 𝐼) |
16 | 15 | eleq2d 2825 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ 𝐼)) |
17 | 16 | biimpa 502 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ 𝐼) |
18 | 14, 17 | ffvelrnd 6524 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑖 ∈ 𝐼 ↦ 𝑋)‘𝑥) ∈ 𝐵) |
19 | 3 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
20 | simprl 811 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
21 | simprr 813 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
22 | 1, 2 | mndcl 17522 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
23 | 19, 20, 21, 22 | syl3anc 1477 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | 4, 18, 23 | seqcl 13035 | . 2 ⊢ (𝜑 → (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁) ∈ 𝐵) |
25 | 12, 24 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ↦ cmpt 4881 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℤ≥cuz 11899 ...cfz 12539 seqcseq 13015 Basecbs 16079 +gcplusg 16163 Σg cgsu 16323 Mndcmnd 17515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-seq 13016 df-0g 16324 df-gsum 16325 df-mgm 17463 df-sgrp 17505 df-mnd 17516 |
This theorem is referenced by: m2detleiblem2 20656 |
Copyright terms: Public domain | W3C validator |