MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgp0 Structured version   Visualization version   GIF version

Theorem gsummgp0 18808
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
gsummgp0.g 𝐺 = (mulGrp‘𝑅)
gsummgp0.0 0 = (0g𝑅)
gsummgp0.r (𝜑𝑅 ∈ CRing)
gsummgp0.n (𝜑𝑁 ∈ Fin)
gsummgp0.a ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
gsummgp0.e ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
gsummgp0.b (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
Assertion
Ref Expression
gsummgp0 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Distinct variable groups:   𝐴,𝑖   𝐵,𝑛   𝑖,𝑛,𝐺   𝑖,𝑁,𝑛   𝑅,𝑛   𝜑,𝑖,𝑛   0 ,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑖)   𝑅(𝑖)

Proof of Theorem gsummgp0
StepHypRef Expression
1 gsummgp0.b . 2 (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
2 difsnid 4486 . . . . . . 7 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
32eqcomd 2766 . . . . . 6 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
43ad2antrl 766 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
54mpteq1d 4890 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑛𝑁𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))
65oveq2d 6829 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)))
7 gsummgp0.g . . . . 5 𝐺 = (mulGrp‘𝑅)
8 eqid 2760 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 18695 . . . 4 (Base‘𝑅) = (Base‘𝐺)
10 eqid 2760 . . . . 5 (.r𝑅) = (.r𝑅)
117, 10mgpplusg 18693 . . . 4 (.r𝑅) = (+g𝐺)
12 gsummgp0.r . . . . . 6 (𝜑𝑅 ∈ CRing)
137crngmgp 18755 . . . . . 6 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ CMnd)
1514adantr 472 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐺 ∈ CMnd)
16 gsummgp0.n . . . . . 6 (𝜑𝑁 ∈ Fin)
17 diffi 8357 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin)
1816, 17syl 17 . . . . 5 (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin)
1918adantr 472 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin)
20 simpl 474 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝜑)
21 eldifi 3875 . . . . 5 (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛𝑁)
22 gsummgp0.a . . . . 5 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
2320, 21, 22syl2an 495 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
24 simprl 811 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑖𝑁)
25 neldifsnd 4468 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖}))
26 crngring 18758 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2712, 26syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
28 ringmnd 18756 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
29 gsummgp0.0 . . . . . . . 8 0 = (0g𝑅)
308, 29mndidcl 17509 . . . . . . 7 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
3127, 28, 303syl 18 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
3231adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 0 ∈ (Base‘𝑅))
33 eleq1 2827 . . . . . 6 (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3433ad2antll 767 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3532, 34mpbird 247 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅))
36 gsummgp0.e . . . . 5 ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
3736adantlr 753 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵)
389, 11, 15, 19, 23, 24, 25, 35, 37gsumunsnd 18557 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵))
39 oveq2 6821 . . . . 5 (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4039ad2antll 767 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4127adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑅 ∈ Ring)
4221, 22sylan2 492 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
4342ralrimiva 3104 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅))
449, 14, 18, 43gsummptcl 18566 . . . . . 6 (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
4544adantr 472 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
468, 10, 29ringrz 18788 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4741, 45, 46syl2anc 696 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4840, 47eqtrd 2794 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = 0 )
496, 38, 483eqtrd 2798 . 2 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
501, 49rexlimddv 3173 1 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wrex 3051  cdif 3712  cun 3713  {csn 4321  cmpt 4881  cfv 6049  (class class class)co 6813  Fincfn 8121  Basecbs 16059  .rcmulr 16144  0gc0g 16302   Σg cgsu 16303  Mndcmnd 17495  CMndccmn 18393  mulGrpcmgp 18689  Ringcrg 18747  CRingccrg 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ring 18749  df-cring 18750
This theorem is referenced by:  smadiadetlem0  20669
  Copyright terms: Public domain W3C validator