Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumle Structured version   Visualization version   GIF version

Theorem gsumle 29907
Description: A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
gsumle.b 𝐵 = (Base‘𝑀)
gsumle.l = (le‘𝑀)
gsumle.m (𝜑𝑀 ∈ oMnd)
gsumle.n (𝜑𝑀 ∈ CMnd)
gsumle.a (𝜑𝐴 ∈ Fin)
gsumle.f (𝜑𝐹:𝐴𝐵)
gsumle.g (𝜑𝐺:𝐴𝐵)
gsumle.c (𝜑𝐹𝑟 𝐺)
Assertion
Ref Expression
gsumle (𝜑 → (𝑀 Σg 𝐹) (𝑀 Σg 𝐺))

Proof of Theorem gsumle
Dummy variables 𝑒 𝑎 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumle.a . . 3 (𝜑𝐴 ∈ Fin)
2 ssid 3657 . . . 4 𝐴𝐴
3 sseq1 3659 . . . . . . . 8 (𝑎 = ∅ → (𝑎𝐴 ↔ ∅ ⊆ 𝐴))
43anbi2d 740 . . . . . . 7 (𝑎 = ∅ → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
5 reseq2 5423 . . . . . . . . 9 (𝑎 = ∅ → (𝐹𝑎) = (𝐹 ↾ ∅))
65oveq2d 6706 . . . . . . . 8 (𝑎 = ∅ → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹 ↾ ∅)))
7 reseq2 5423 . . . . . . . . 9 (𝑎 = ∅ → (𝐺𝑎) = (𝐺 ↾ ∅))
87oveq2d 6706 . . . . . . . 8 (𝑎 = ∅ → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺 ↾ ∅)))
96, 8breq12d 4698 . . . . . . 7 (𝑎 = ∅ → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅))))
104, 9imbi12d 333 . . . . . 6 (𝑎 = ∅ → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))))
11 sseq1 3659 . . . . . . . 8 (𝑎 = 𝑒 → (𝑎𝐴𝑒𝐴))
1211anbi2d 740 . . . . . . 7 (𝑎 = 𝑒 → ((𝜑𝑎𝐴) ↔ (𝜑𝑒𝐴)))
13 reseq2 5423 . . . . . . . . 9 (𝑎 = 𝑒 → (𝐹𝑎) = (𝐹𝑒))
1413oveq2d 6706 . . . . . . . 8 (𝑎 = 𝑒 → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹𝑒)))
15 reseq2 5423 . . . . . . . . 9 (𝑎 = 𝑒 → (𝐺𝑎) = (𝐺𝑒))
1615oveq2d 6706 . . . . . . . 8 (𝑎 = 𝑒 → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺𝑒)))
1714, 16breq12d 4698 . . . . . . 7 (𝑎 = 𝑒 → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))))
1812, 17imbi12d 333 . . . . . 6 (𝑎 = 𝑒 → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))))
19 sseq1 3659 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑎𝐴 ↔ (𝑒 ∪ {𝑦}) ⊆ 𝐴))
2019anbi2d 740 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑦}) → ((𝜑𝑎𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)))
21 reseq2 5423 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑦}) → (𝐹𝑎) = (𝐹 ↾ (𝑒 ∪ {𝑦})))
2221oveq2d 6706 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))))
23 reseq2 5423 . . . . . . . . 9 (𝑎 = (𝑒 ∪ {𝑦}) → (𝐺𝑎) = (𝐺 ↾ (𝑒 ∪ {𝑦})))
2423oveq2d 6706 . . . . . . . 8 (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
2522, 24breq12d 4698 . . . . . . 7 (𝑎 = (𝑒 ∪ {𝑦}) → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))
2620, 25imbi12d 333 . . . . . 6 (𝑎 = (𝑒 ∪ {𝑦}) → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
27 sseq1 3659 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝐴𝐴𝐴))
2827anbi2d 740 . . . . . . 7 (𝑎 = 𝐴 → ((𝜑𝑎𝐴) ↔ (𝜑𝐴𝐴)))
29 reseq2 5423 . . . . . . . . 9 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
3029oveq2d 6706 . . . . . . . 8 (𝑎 = 𝐴 → (𝑀 Σg (𝐹𝑎)) = (𝑀 Σg (𝐹𝐴)))
31 reseq2 5423 . . . . . . . . 9 (𝑎 = 𝐴 → (𝐺𝑎) = (𝐺𝐴))
3231oveq2d 6706 . . . . . . . 8 (𝑎 = 𝐴 → (𝑀 Σg (𝐺𝑎)) = (𝑀 Σg (𝐺𝐴)))
3330, 32breq12d 4698 . . . . . . 7 (𝑎 = 𝐴 → ((𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎)) ↔ (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴))))
3428, 33imbi12d 333 . . . . . 6 (𝑎 = 𝐴 → (((𝜑𝑎𝐴) → (𝑀 Σg (𝐹𝑎)) (𝑀 Σg (𝐺𝑎))) ↔ ((𝜑𝐴𝐴) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))))
35 gsumle.m . . . . . . . . . 10 (𝜑𝑀 ∈ oMnd)
36 omndtos 29833 . . . . . . . . . 10 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
37 tospos 29786 . . . . . . . . . 10 (𝑀 ∈ Toset → 𝑀 ∈ Poset)
3835, 36, 373syl 18 . . . . . . . . 9 (𝜑𝑀 ∈ Poset)
39 res0 5432 . . . . . . . . . . . 12 (𝐹 ↾ ∅) = ∅
4039oveq2i 6701 . . . . . . . . . . 11 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg ∅)
41 eqid 2651 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
4241gsum0 17325 . . . . . . . . . . 11 (𝑀 Σg ∅) = (0g𝑀)
4340, 42eqtri 2673 . . . . . . . . . 10 (𝑀 Σg (𝐹 ↾ ∅)) = (0g𝑀)
44 omndmnd 29832 . . . . . . . . . . 11 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
45 gsumle.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
4645, 41mndidcl 17355 . . . . . . . . . . 11 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
4735, 44, 463syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑀) ∈ 𝐵)
4843, 47syl5eqel 2734 . . . . . . . . 9 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵)
49 gsumle.l . . . . . . . . . 10 = (le‘𝑀)
5045, 49posref 16998 . . . . . . . . 9 ((𝑀 ∈ Poset ∧ (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐹 ↾ ∅)))
5138, 48, 50syl2anc 694 . . . . . . . 8 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐹 ↾ ∅)))
52 res0 5432 . . . . . . . . . 10 (𝐺 ↾ ∅) = ∅
5339, 52eqtr4i 2676 . . . . . . . . 9 (𝐹 ↾ ∅) = (𝐺 ↾ ∅)
5453oveq2i 6701 . . . . . . . 8 (𝑀 Σg (𝐹 ↾ ∅)) = (𝑀 Σg (𝐺 ↾ ∅))
5551, 54syl6breq 4726 . . . . . . 7 (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))
5655adantr 480 . . . . . 6 ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) (𝑀 Σg (𝐺 ↾ ∅)))
57 ssun1 3809 . . . . . . . . . 10 𝑒 ⊆ (𝑒 ∪ {𝑦})
58 sstr2 3643 . . . . . . . . . 10 (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝑒 ∪ {𝑦}) ⊆ 𝐴𝑒𝐴))
5957, 58ax-mp 5 . . . . . . . . 9 ((𝑒 ∪ {𝑦}) ⊆ 𝐴𝑒𝐴)
6059anim2i 592 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝜑𝑒𝐴))
6160imim1i 63 . . . . . . 7 (((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))))
62 simplr 807 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴))
63 simpllr 815 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ¬ 𝑦𝑒)
64 simpr 476 . . . . . . . . . 10 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))
65 eqid 2651 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
6635ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑀 ∈ oMnd)
67 gsumle.g . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴𝐵)
6867ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐺:𝐴𝐵)
69 simplr 807 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
70 ssun2 3810 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (𝑒 ∪ {𝑦})
71 vex 3234 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
7271snss 4348 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝑒 ∪ {𝑦}) ↔ {𝑦} ⊆ (𝑒 ∪ {𝑦}))
7370, 72mpbir 221 . . . . . . . . . . . . . . . 16 𝑦 ∈ (𝑒 ∪ {𝑦})
7473a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦 ∈ (𝑒 ∪ {𝑦}))
7569, 74sseldd 3637 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦𝐴)
7668, 75ffvelrnd 6400 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑦) ∈ 𝐵)
7776adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐺𝑦) ∈ 𝐵)
78 gsumle.n . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ CMnd)
7978ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑀 ∈ CMnd)
80 vex 3234 . . . . . . . . . . . . . . 15 𝑒 ∈ V
8180a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒 ∈ V)
82 gsumle.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
8382ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹:𝐴𝐵)
8457, 69syl5ss 3647 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒𝐴)
8583, 84fssresd 6109 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒):𝑒𝐵)
861ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐴 ∈ Fin)
87 fvexd 6241 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (0g𝑀) ∈ V)
8883, 86, 87fdmfifsupp 8326 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹 finSupp (0g𝑀))
8988, 87fsuppres 8341 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒) finSupp (0g𝑀))
9045, 41, 79, 81, 85, 89gsumcl 18362 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹𝑒)) ∈ 𝐵)
9190adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) ∈ 𝐵)
9283, 75ffvelrnd 6400 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑦) ∈ 𝐵)
9392adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐹𝑦) ∈ 𝐵)
9468, 84fssresd 6109 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑒):𝑒𝐵)
95 ssfi 8221 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Fin ∧ 𝑒𝐴) → 𝑒 ∈ Fin)
9686, 84, 95syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑒 ∈ Fin)
9794, 96, 87fdmfifsupp 8326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺𝑒) finSupp (0g𝑀))
9845, 41, 79, 81, 94, 97gsumcl 18362 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺𝑒)) ∈ 𝐵)
9998adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐺𝑒)) ∈ 𝐵)
100 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)))
101 simpll 805 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝜑)
102 gsumle.c . . . . . . . . . . . . . . 15 (𝜑𝐹𝑟 𝐺)
103102ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝐹𝑟 𝐺)
104 ffn 6083 . . . . . . . . . . . . . . . 16 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
10582, 104syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
106 ffn 6083 . . . . . . . . . . . . . . . 16 (𝐺:𝐴𝐵𝐺 Fn 𝐴)
10767, 106syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 Fn 𝐴)
108 inidm 3855 . . . . . . . . . . . . . . 15 (𝐴𝐴) = 𝐴
109 eqidd 2652 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
110 eqidd 2652 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
111105, 107, 1, 1, 108, 109, 110ofrval 6949 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝐺𝑦𝐴) → (𝐹𝑦) (𝐺𝑦))
112101, 103, 75, 111syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑦) (𝐺𝑦))
113112adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝐹𝑦) (𝐺𝑦))
11479adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑀 ∈ CMnd)
11545, 49, 65, 66, 77, 91, 93, 99, 100, 113, 114omndadd2d 29836 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
11696adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑒 ∈ Fin)
11782ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝐹:𝐴𝐵)
118 simplr 807 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
119 elun1 3813 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑒𝑧 ∈ (𝑒 ∪ {𝑦}))
120119adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝑧 ∈ (𝑒 ∪ {𝑦}))
121118, 120sseldd 3637 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → 𝑧𝐴)
122117, 121ffvelrnd 6400 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧𝑒) → (𝐹𝑧) ∈ 𝐵)
123122ex 449 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑧𝑒 → (𝐹𝑧) ∈ 𝐵))
124123ad2antrr 762 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑧𝑒 → (𝐹𝑧) ∈ 𝐵))
125124imp 444 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) ∧ 𝑧𝑒) → (𝐹𝑧) ∈ 𝐵)
12671a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → 𝑦 ∈ V)
127 simplr 807 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ¬ 𝑦𝑒)
128 fveq2 6229 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
12945, 65, 114, 116, 125, 126, 127, 93, 128gsumunsn 18405 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦)))
13083, 69feqresmpt 6289 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧)))
131130oveq2d 6706 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))))
13283, 84feqresmpt 6289 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐹𝑒) = (𝑧𝑒 ↦ (𝐹𝑧)))
133132oveq2d 6706 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐹𝑒)) = (𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧))))
134133oveq1d 6705 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦)))
135131, 134eqeq12d 2666 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦))))
136135adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐹𝑧)))(+g𝑀)(𝐹𝑦))))
137129, 136mpbird 247 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹𝑒))(+g𝑀)(𝐹𝑦)))
13867adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝐺:𝐴𝐵)
139138ad2antrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → 𝐺:𝐴𝐵)
140121adantlr 751 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → 𝑧𝐴)
141139, 140ffvelrnd 6400 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ 𝑧𝑒) → (𝐺𝑧) ∈ 𝐵)
14271a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑦 ∈ V)
143 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ¬ 𝑦𝑒)
144 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
14545, 65, 79, 96, 141, 142, 143, 76, 144gsumunsn 18405 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦)))
146 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑒 ∪ {𝑦}) ⊆ 𝐴)
147138, 146feqresmpt 6289 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧)))
148147oveq2d 6706 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))))
149 resabs1 5462 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒))
15057, 149mp1i 13 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒))
15159adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑒𝐴)
152138, 151feqresmpt 6289 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺𝑒) = (𝑧𝑒 ↦ (𝐺𝑧)))
153150, 152eqtrd 2685 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝑧𝑒 ↦ (𝐺𝑧)))
154153oveq2d 6706 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧))))
155 resabs1 5462 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑦} ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}))
15670, 155mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}))
15770, 146syl5ss 3647 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴)
158138, 157feqresmpt 6289 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺𝑧)))
159156, 158eqtrd 2685 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺𝑧)))
160159oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺𝑧))))
16135, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ Mnd)
162161adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑀 ∈ Mnd)
16371a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V)
16473a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ (𝑒 ∪ {𝑦}))
165146, 164sseldd 3637 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦𝐴)
166138, 165ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺𝑦) ∈ 𝐵)
167144adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 = 𝑦) → (𝐺𝑧) = (𝐺𝑦))
16845, 162, 163, 166, 167gsumsnd 18398 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺𝑧))) = (𝐺𝑦))
169160, 168eqtrd 2685 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝐺𝑦))
170154, 169oveq12d 6708 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦)))
171148, 170eqeq12d 2666 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦))))
172171adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺𝑧))) = ((𝑀 Σg (𝑧𝑒 ↦ (𝐺𝑧)))(+g𝑀)(𝐺𝑦))))
173145, 172mpbird 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))))
17457, 149ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺𝑒)
175174oveq2i 6701 . . . . . . . . . . . . . . 15 (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝐺𝑒))
17670, 155ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})
177176oveq2i 6701 . . . . . . . . . . . . . . 15 (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝐺 ↾ {𝑦}))
178175, 177oveq12i 6702 . . . . . . . . . . . . . 14 ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦})))
179173, 178syl6eq 2701 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))))
18070, 69syl5ss 3647 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → {𝑦} ⊆ 𝐴)
18168, 180feqresmpt 6289 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝐺 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐺𝑥)))
182181oveq2d 6706 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))))
183 cmnmnd 18254 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ CMnd → 𝑀 ∈ Mnd)
18479, 183syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → 𝑀 ∈ Mnd)
185 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
18645, 185gsumsn 18400 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ (𝐺𝑦) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))) = (𝐺𝑦))
187184, 142, 76, 186syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺𝑥))) = (𝐺𝑦))
188182, 187eqtrd 2685 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝐺𝑦))
189188oveq2d 6706 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
190179, 189eqtrd 2685 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
191190adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺𝑒))(+g𝑀)(𝐺𝑦)))
192115, 137, 1913brtr4d 4717 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦𝑒) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
19362, 63, 64, 192syl21anc 1365 . . . . . . . . 9 ((((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))
194193exp31 629 . . . . . . . 8 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒)) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
195194a2d 29 . . . . . . 7 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
19661, 195syl5 34 . . . . . 6 ((𝑒 ∈ Fin ∧ ¬ 𝑦𝑒) → (((𝜑𝑒𝐴) → (𝑀 Σg (𝐹𝑒)) (𝑀 Σg (𝐺𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))))
19710, 18, 26, 34, 56, 196findcard2s 8242 . . . . 5 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴))))
198197imp 444 . . . 4 ((𝐴 ∈ Fin ∧ (𝜑𝐴𝐴)) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
1992, 198mpanr2 720 . . 3 ((𝐴 ∈ Fin ∧ 𝜑) → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
2001, 199mpancom 704 . 2 (𝜑 → (𝑀 Σg (𝐹𝐴)) (𝑀 Σg (𝐺𝐴)))
201 fnresdm 6038 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
202105, 201syl 17 . . 3 (𝜑 → (𝐹𝐴) = 𝐹)
203202oveq2d 6706 . 2 (𝜑 → (𝑀 Σg (𝐹𝐴)) = (𝑀 Σg 𝐹))
204 fnresdm 6038 . . . 4 (𝐺 Fn 𝐴 → (𝐺𝐴) = 𝐺)
205107, 204syl 17 . . 3 (𝜑 → (𝐺𝐴) = 𝐺)
206205oveq2d 6706 . 2 (𝜑 → (𝑀 Σg (𝐺𝐴)) = (𝑀 Σg 𝐺))
207200, 203, 2063brtr3d 4716 1 (𝜑 → (𝑀 Σg 𝐹) (𝑀 Σg 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cmpt 4762  cres 5145   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑟 cofr 6938  Fincfn 7997  Basecbs 15904  +gcplusg 15988  lecple 15995  0gc0g 16147   Σg cgsu 16148  Posetcpo 16987  Tosetctos 17080  Mndcmnd 17341  CMndccmn 18239  oMndcomnd 29825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-poset 16993  df-toset 17081  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-omnd 29827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator