Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumge0cl Structured version   Visualization version   GIF version

Theorem gsumge0cl 40906
Description: Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
gsumge0cl.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
gsumge0cl.2 (𝜑𝑋𝑉)
gsumge0cl.3 (𝜑𝐹:𝑋⟶(0[,]+∞))
gsumge0cl.4 (𝜑𝐹 finSupp 0)
Assertion
Ref Expression
gsumge0cl (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))

Proof of Theorem gsumge0cl
StepHypRef Expression
1 iccssxr 12294 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 df-ss 3621 . . . . 5 ((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩ ℝ*) = (0[,]+∞))
31, 2mpbi 220 . . . 4 ((0[,]+∞) ∩ ℝ*) = (0[,]+∞)
43eqcomi 2660 . . 3 (0[,]+∞) = ((0[,]+∞) ∩ ℝ*)
5 ovex 6718 . . . 4 (0[,]+∞) ∈ V
6 gsumge0cl.1 . . . . 5 𝐺 = (ℝ*𝑠s (0[,]+∞))
7 xrsbas 19810 . . . . 5 * = (Base‘ℝ*𝑠)
86, 7ressbas 15977 . . . 4 ((0[,]+∞) ∈ V → ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺))
95, 8ax-mp 5 . . 3 ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺)
104, 9eqtri 2673 . 2 (0[,]+∞) = (Base‘𝐺)
11 eqid 2651 . . . . . 6 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1cmn 19834 . . . . 5 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
13 cmnmnd 18254 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd → (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd)
1412, 13ax-mp 5 . . . 4 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
15 xrge0cmn 19836 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
166, 15eqeltri 2726 . . . . 5 𝐺 ∈ CMnd
17 cmnmnd 18254 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
1816, 17ax-mp 5 . . . 4 𝐺 ∈ Mnd
1914, 18pm3.2i 470 . . 3 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd)
201sseli 3632 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*)
21 mnfxr 10134 . . . . . . . . . 10 -∞ ∈ ℝ*
2221a1i 11 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ ∈ ℝ*)
23 0xr 10124 . . . . . . . . . . 11 0 ∈ ℝ*
2423a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ∈ ℝ*)
25 mnflt0 11997 . . . . . . . . . . 11 -∞ < 0
2625a1i 11 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → -∞ < 0)
27 pnfxr 10130 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2827a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → +∞ ∈ ℝ*)
29 id 22 . . . . . . . . . . 11 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (0[,]+∞))
30 iccgelb 12268 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (0[,]+∞)) → 0 ≤ 𝑥)
3124, 28, 29, 30syl3anc 1366 . . . . . . . . . 10 (𝑥 ∈ (0[,]+∞) → 0 ≤ 𝑥)
3222, 24, 20, 26, 31xrltletrd 12030 . . . . . . . . 9 (𝑥 ∈ (0[,]+∞) → -∞ < 𝑥)
3322, 20, 32xrgtned 39851 . . . . . . . 8 (𝑥 ∈ (0[,]+∞) → 𝑥 ≠ -∞)
34 nelsn 4245 . . . . . . . 8 (𝑥 ≠ -∞ → ¬ 𝑥 ∈ {-∞})
3533, 34syl 17 . . . . . . 7 (𝑥 ∈ (0[,]+∞) → ¬ 𝑥 ∈ {-∞})
3620, 35eldifd 3618 . . . . . 6 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
3736rgen 2951 . . . . 5 𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞})
38 dfss3 3625 . . . . 5 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ ∀𝑥 ∈ (0[,]+∞)𝑥 ∈ (ℝ* ∖ {-∞}))
3937, 38mpbir 221 . . . 4 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
40 0e0iccpnf 12321 . . . 4 0 ∈ (0[,]+∞)
4139, 40pm3.2i 470 . . 3 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))
42 difss 3770 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
4311, 7ressbas2 15978 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
4442, 43ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4511xrs10 19833 . . . 4 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
46 xrex 11867 . . . . . . 7 * ∈ V
47 difexg 4841 . . . . . . 7 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
4846, 47ax-mp 5 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
4941simpli 473 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
50 ressabs 15986 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
5148, 49, 50mp2an 708 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
526eqcomi 2660 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = 𝐺
5351, 52eqtr2i 2674 . . . 4 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
5444, 45, 53submnd0 17367 . . 3 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g𝐺))
5519, 41, 54mp2an 708 . 2 0 = (0g𝐺)
5616a1i 11 . 2 (𝜑𝐺 ∈ CMnd)
57 gsumge0cl.2 . 2 (𝜑𝑋𝑉)
58 gsumge0cl.3 . 2 (𝜑𝐹:𝑋⟶(0[,]+∞))
59 gsumge0cl.4 . 2 (𝜑𝐹 finSupp 0)
6010, 55, 56, 57, 58, 59gsumcl 18362 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cdif 3604  cin 3606  wss 3607  {csn 4210   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690   finSupp cfsupp 8316  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  [,]cicc 12216  Basecbs 15904  s cress 15905  0gc0g 16147   Σg cgsu 16148  *𝑠cxrs 16207  Mndcmnd 17341  CMndccmn 18239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-xadd 11985  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-0g 16149  df-gsum 16150  df-xrs 16209  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-cntz 17796  df-cmn 18241
This theorem is referenced by:  sge0tsms  40915
  Copyright terms: Public domain W3C validator