![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumdifsndf | Structured version Visualization version GIF version |
Description: Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.) |
Ref | Expression |
---|---|
gsumdifsndf.k | ⊢ Ⅎ𝑘𝑌 |
gsumdifsndf.n | ⊢ Ⅎ𝑘𝜑 |
gsumdifsndf.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumdifsndf.p | ⊢ + = (+g‘𝐺) |
gsumdifsndf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumdifsndf.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumdifsndf.f | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) |
gsumdifsndf.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumdifsndf.m | ⊢ (𝜑 → 𝑀 ∈ 𝐴) |
gsumdifsndf.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumdifsndf.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumdifsndf | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumdifsndf.n | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | gsumdifsndf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2770 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | gsumdifsndf.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | gsumdifsndf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | gsumdifsndf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
7 | gsumdifsndf.e | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
8 | gsumdifsndf.f | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) | |
9 | difid 4093 | . . . 4 ⊢ ({𝑀} ∖ {𝑀}) = ∅ | |
10 | gsumdifsndf.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐴) | |
11 | 10 | snssd 4473 | . . . . 5 ⊢ (𝜑 → {𝑀} ⊆ 𝐴) |
12 | difin2 4036 | . . . . 5 ⊢ ({𝑀} ⊆ 𝐴 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑀} ∖ {𝑀}) = ((𝐴 ∖ {𝑀}) ∩ {𝑀})) |
14 | 9, 13 | syl5reqr 2819 | . . 3 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∩ {𝑀}) = ∅) |
15 | difsnid 4474 | . . . . 5 ⊢ (𝑀 ∈ 𝐴 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) | |
16 | 10, 15 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝑀}) ∪ {𝑀}) = 𝐴) |
17 | 16 | eqcomd 2776 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝑀}) ∪ {𝑀})) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 17 | gsumsplit2f 42661 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
19 | cmnmnd 18414 | . . . . 5 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
20 | 5, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
21 | gsumdifsndf.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | gsumdifsndf.s | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
23 | gsumdifsndf.k | . . . 4 ⊢ Ⅎ𝑘𝑌 | |
24 | 2, 20, 10, 21, 22, 1, 23 | gsumsnfd 18557 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
25 | 24 | oveq2d 6808 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
26 | 18, 25 | eqtrd 2804 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 Ⅎwnf 1855 ∈ wcel 2144 Ⅎwnfc 2899 ∖ cdif 3718 ∪ cun 3719 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 {csn 4314 class class class wbr 4784 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 finSupp cfsupp 8430 Basecbs 16063 +gcplusg 16148 0gc0g 16307 Σg cgsu 16308 Mndcmnd 17501 CMndccmn 18399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-0g 16309 df-gsum 16310 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |