Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom2 Structured version   Visualization version   GIF version

Theorem gsumcom2 18570
 Description: Two-dimensional commutation of a group sum. Note that while 𝐴 and 𝐷 are constants w.r.t. 𝑗, 𝑘, 𝐶(𝑗) and 𝐸(𝑘) are not. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
gsumcom2.d (𝜑𝐷𝑌)
gsumcom2.c (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
Assertion
Ref Expression
gsumcom2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
Distinct variable groups:   𝑗,𝑘,𝐵   𝐷,𝑗,𝑘   𝑗,𝐸   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝐸(𝑘)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑘)

Proof of Theorem gsumcom2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 snex 5053 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7121 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 698 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3100 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7304 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 696 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
1312ralrimivva 3105 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
14 eqid 2756 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
1514fmpt2x 7400 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
1613, 15sylib 208 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
17 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
18 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
191, 2, 3, 4, 6, 12, 17, 18gsum2d2lem 18568 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
20 relxp 5279 . . . . . . 7 Rel ({𝑘} × 𝐸)
2120rgenw 3058 . . . . . 6 𝑘𝐷 Rel ({𝑘} × 𝐸)
22 reliun 5391 . . . . . 6 (Rel 𝑘𝐷 ({𝑘} × 𝐸) ↔ ∀𝑘𝐷 Rel ({𝑘} × 𝐸))
2321, 22mpbir 221 . . . . 5 Rel 𝑘𝐷 ({𝑘} × 𝐸)
24 cnvf1o 7440 . . . . 5 (Rel 𝑘𝐷 ({𝑘} × 𝐸) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸))
2523, 24ax-mp 5 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)
26 relxp 5279 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2726rgenw 3058 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
28 reliun 5391 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2927, 28mpbir 221 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
30 relcnv 5657 . . . . . 6 Rel 𝑘𝐷 ({𝑘} × 𝐸)
31 nfv 1988 . . . . . . . 8 𝑘𝜑
32 nfv 1988 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
33 nfiu1 4698 . . . . . . . . . . 11 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3433nfcnv 5452 . . . . . . . . . 10 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3534nfel2 2915 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
3632, 35nfbi 1978 . . . . . . . 8 𝑘(⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
3731, 36nfim 1970 . . . . . . 7 𝑘(𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
38 opeq2 4550 . . . . . . . . . 10 (𝑘 = 𝑦 → ⟨𝑥, 𝑘⟩ = ⟨𝑥, 𝑦⟩)
3938eleq1d 2820 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
4038eleq1d 2820 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
4139, 40bibi12d 334 . . . . . . . 8 (𝑘 = 𝑦 → ((⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
4241imbi2d 329 . . . . . . 7 (𝑘 = 𝑦 → ((𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
43 nfv 1988 . . . . . . . . 9 𝑗𝜑
44 nfiu1 4698 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
4544nfel2 2915 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
46 nfv 1988 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
4745, 46nfbi 1978 . . . . . . . . 9 𝑗(⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
4843, 47nfim 1970 . . . . . . . 8 𝑗(𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
49 opeq1 4549 . . . . . . . . . . 11 (𝑗 = 𝑥 → ⟨𝑗, 𝑘⟩ = ⟨𝑥, 𝑘⟩)
5049eleq1d 2820 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
5149eleq1d 2820 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
5250, 51bibi12d 334 . . . . . . . . 9 (𝑗 = 𝑥 → ((⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
5352imbi2d 329 . . . . . . . 8 (𝑗 = 𝑥 → ((𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
54 gsumcom2.c . . . . . . . . . 10 (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
55 opeliunxp 5323 . . . . . . . . . 10 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
56 opeliunxp 5323 . . . . . . . . . 10 (⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ (𝑘𝐷𝑗𝐸))
5754, 55, 563bitr4g 303 . . . . . . . . 9 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
58 vex 3339 . . . . . . . . . 10 𝑗 ∈ V
59 vex 3339 . . . . . . . . . 10 𝑘 ∈ V
6058, 59opelcnv 5455 . . . . . . . . 9 (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
6157, 60syl6bbr 278 . . . . . . . 8 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6248, 53, 61chvar 2403 . . . . . . 7 (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6337, 42, 62chvar 2403 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6429, 30, 63eqrelrdv 5369 . . . . 5 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) = 𝑘𝐷 ({𝑘} × 𝐸))
65 f1oeq3 6286 . . . . 5 ( 𝑗𝐴 ({𝑗} × 𝐶) = 𝑘𝐷 ({𝑘} × 𝐸) → ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)))
6664, 65syl 17 . . . 4 (𝜑 → ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)))
6725, 66mpbiri 248 . . 3 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶))
681, 2, 3, 11, 16, 19, 67gsumf1o 18513 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))))
69 sneq 4327 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
7069cnveqd 5449 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
7170unieqd 4594 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
72 opswap 5779 . . . . . . . . 9 {⟨𝑥, 𝑦⟩} = ⟨𝑦, 𝑥
7371, 72syl6eq 2806 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = ⟨𝑦, 𝑥⟩)
7473fveq2d 6352 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩))
75 df-ov 6812 . . . . . . 7 (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩)
7674, 75syl6eqr 2808 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
7776mpt2mptx 6912 . . . . 5 (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
78 nfcv 2898 . . . . . . 7 𝑥({𝑘} × 𝐸)
79 nfcv 2898 . . . . . . . 8 𝑘{𝑥}
80 nfcsb1v 3686 . . . . . . . 8 𝑘𝑥 / 𝑘𝐸
8179, 80nfxp 5295 . . . . . . 7 𝑘({𝑥} × 𝑥 / 𝑘𝐸)
82 sneq 4327 . . . . . . . 8 (𝑘 = 𝑥 → {𝑘} = {𝑥})
83 csbeq1a 3679 . . . . . . . 8 (𝑘 = 𝑥𝐸 = 𝑥 / 𝑘𝐸)
8482, 83xpeq12d 5293 . . . . . . 7 (𝑘 = 𝑥 → ({𝑘} × 𝐸) = ({𝑥} × 𝑥 / 𝑘𝐸))
8578, 81, 84cbviun 4705 . . . . . 6 𝑘𝐷 ({𝑘} × 𝐸) = 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸)
86 mpteq1 4885 . . . . . 6 ( 𝑘𝐷 ({𝑘} × 𝐸) = 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})))
8785, 86ax-mp 5 . . . . 5 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
88 nfcv 2898 . . . . . 6 𝑥𝐸
89 nfcv 2898 . . . . . 6 𝑥(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
90 nfcv 2898 . . . . . 6 𝑦(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
91 nfcv 2898 . . . . . . 7 𝑘𝑦
92 nfmpt22 6884 . . . . . . 7 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
93 nfcv 2898 . . . . . . 7 𝑘𝑥
9491, 92, 93nfov 6835 . . . . . 6 𝑘(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
95 nfcv 2898 . . . . . . 7 𝑗𝑦
96 nfmpt21 6883 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
97 nfcv 2898 . . . . . . 7 𝑗𝑥
9895, 96, 97nfov 6835 . . . . . 6 𝑗(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
99 oveq2 6817 . . . . . . 7 (𝑘 = 𝑥 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
100 oveq1 6816 . . . . . . 7 (𝑗 = 𝑦 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10199, 100sylan9eq 2810 . . . . . 6 ((𝑘 = 𝑥𝑗 = 𝑦) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10288, 80, 89, 90, 94, 98, 83, 101cbvmpt2x 6894 . . . . 5 (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10377, 87, 1023eqtr4i 2788 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
104 f1of 6294 . . . . . . 7 ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
10567, 104syl 17 . . . . . 6 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
106 eqid 2756 . . . . . . 7 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})
107106fmpt 6540 . . . . . 6 (∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
108105, 107sylibr 224 . . . . 5 (𝜑 → ∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶))
109 eqidd 2757 . . . . 5 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))
11016feqmptd 6407 . . . . 5 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) = (𝑥 𝑗𝐴 ({𝑗} × 𝐶) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥)))
111 fveq2 6348 . . . . 5 (𝑥 = {𝑧} → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
112108, 109, 110, 111fmptcof 6556 . . . 4 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})))
11312ex 449 . . . . . . . . 9 (𝜑 → ((𝑗𝐴𝑘𝐶) → 𝑋𝐵))
11414ovmpt4g 6944 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
1151143expia 1115 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → (𝑋𝐵 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
116113, 115sylcom 30 . . . . . . . 8 (𝜑 → ((𝑗𝐴𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
11754, 116sylbird 250 . . . . . . 7 (𝜑 → ((𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
1181173impib 1109 . . . . . 6 ((𝜑𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
119118eqcomd 2762 . . . . 5 ((𝜑𝑘𝐷𝑗𝐸) → 𝑋 = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
120119mpt2eq3dva 6880 . . . 4 (𝜑 → (𝑘𝐷, 𝑗𝐸𝑋) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
121103, 112, 1203eqtr4a 2816 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑘𝐷, 𝑗𝐸𝑋))
122121oveq2d 6825 . 2 (𝜑 → (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
12368, 122eqtrd 2790 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1628   ∈ wcel 2135  ∀wral 3046  Vcvv 3336  ⦋csb 3670  {csn 4317  ⟨cop 4323  ∪ cuni 4584  ∪ ciun 4668   class class class wbr 4800   ↦ cmpt 4877   × cxp 5260  ◡ccnv 5261   ∘ ccom 5266  Rel wrel 5267  ⟶wf 6041  –1-1-onto→wf1o 6044  ‘cfv 6045  (class class class)co 6809   ↦ cmpt2 6811  Fincfn 8117  Basecbs 16055  0gc0g 16298   Σg cgsu 16299  CMndccmn 18389 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-n0 11481  df-z 11566  df-uz 11876  df-fz 12516  df-fzo 12656  df-seq 12992  df-hash 13308  df-0g 16300  df-gsum 16301  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-cntz 17946  df-cmn 18391 This theorem is referenced by:  gsumcom  18572  gsumbagdiag  19574
 Copyright terms: Public domain W3C validator