MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcllem Structured version   Visualization version   GIF version

Theorem gsumcllem 18355
Description: Lemma for gsumcl 18362 and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumcllem.f (𝜑𝐹:𝐴𝐵)
gsumcllem.a (𝜑𝐴𝑉)
gsumcllem.z (𝜑𝑍𝑈)
gsumcllem.s (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
Assertion
Ref Expression
gsumcllem ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑊
Allowed substitution hints:   𝐵(𝑘)   𝑈(𝑘)   𝑉(𝑘)   𝑍(𝑘)

Proof of Theorem gsumcllem
StepHypRef Expression
1 gsumcllem.f . . . 4 (𝜑𝐹:𝐴𝐵)
21feqmptd 6288 . . 3 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
32adantr 480 . 2 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4 difeq2 3755 . . . . . . . 8 (𝑊 = ∅ → (𝐴𝑊) = (𝐴 ∖ ∅))
5 dif0 3983 . . . . . . . 8 (𝐴 ∖ ∅) = 𝐴
64, 5syl6eq 2701 . . . . . . 7 (𝑊 = ∅ → (𝐴𝑊) = 𝐴)
76eleq2d 2716 . . . . . 6 (𝑊 = ∅ → (𝑘 ∈ (𝐴𝑊) ↔ 𝑘𝐴))
87biimpar 501 . . . . 5 ((𝑊 = ∅ ∧ 𝑘𝐴) → 𝑘 ∈ (𝐴𝑊))
9 gsumcllem.s . . . . . 6 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
10 gsumcllem.a . . . . . 6 (𝜑𝐴𝑉)
11 gsumcllem.z . . . . . 6 (𝜑𝑍𝑈)
121, 9, 10, 11suppssr 7371 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → (𝐹𝑘) = 𝑍)
138, 12sylan2 490 . . . 4 ((𝜑 ∧ (𝑊 = ∅ ∧ 𝑘𝐴)) → (𝐹𝑘) = 𝑍)
1413anassrs 681 . . 3 (((𝜑𝑊 = ∅) ∧ 𝑘𝐴) → (𝐹𝑘) = 𝑍)
1514mpteq2dva 4777 . 2 ((𝜑𝑊 = ∅) → (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴𝑍))
163, 15eqtrd 2685 1 ((𝜑𝑊 = ∅) → 𝐹 = (𝑘𝐴𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cdif 3604  wss 3607  c0 3948  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690   supp csupp 7340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-supp 7341
This theorem is referenced by:  gsumzres  18356  gsumzcl2  18357  gsumzf1o  18359  gsumzaddlem  18367  gsumzmhm  18383  gsumzoppg  18390
  Copyright terms: Public domain W3C validator