![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumadd | Structured version Visualization version GIF version |
Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
Ref | Expression |
---|---|
gsumadd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumadd.z | ⊢ 0 = (0g‘𝐺) |
gsumadd.p | ⊢ + = (+g‘𝐺) |
gsumadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumadd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumadd.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
gsumadd.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsumadd.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsumadd | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumadd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumadd.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumadd.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | eqid 2771 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
5 | gsumadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | cmnmnd 18415 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
8 | gsumadd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumadd.fn | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
10 | gsumadd.hn | . 2 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
11 | 1 | submid 17559 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝐺)) |
12 | 7, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝐺)) |
13 | ssid 3773 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
14 | 1, 4 | cntzcmn 18452 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵) → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
15 | 5, 13, 14 | sylancl 574 | . . 3 ⊢ (𝜑 → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
16 | 13, 15 | syl5sseqr 3803 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ((Cntz‘𝐺)‘𝐵)) |
17 | gsumadd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
18 | gsumadd.h | . 2 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
19 | 1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18 | gsumzadd 18529 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4786 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ∘𝑓 cof 7042 finSupp cfsupp 8431 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Σg cgsu 16309 Mndcmnd 17502 SubMndcsubmnd 17542 Cntzccntz 17955 CMndccmn 18400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-cntz 17957 df-cmn 18402 |
This theorem is referenced by: gsummptfsadd 18531 gsumsub 18555 evlslem1 19730 frlmup1 20354 tsmsadd 22170 tdeglem3 24039 |
Copyright terms: Public domain | W3C validator |