![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsum2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gsum2d 18417. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.) |
Ref | Expression |
---|---|
gsum2d.b | ⊢ 𝐵 = (Base‘𝐺) |
gsum2d.z | ⊢ 0 = (0g‘𝐺) |
gsum2d.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsum2d.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsum2d.r | ⊢ (𝜑 → Rel 𝐴) |
gsum2d.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
gsum2d.s | ⊢ (𝜑 → dom 𝐴 ⊆ 𝐷) |
gsum2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsum2d.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsum2dlem1 | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsum2d.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsum2d.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsum2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsum2d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | imaexg 7145 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ {𝑗}) ∈ V) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 “ {𝑗}) ∈ V) |
7 | vex 3234 | . . . . 5 ⊢ 𝑗 ∈ V | |
8 | vex 3234 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 7, 8 | elimasn 5525 | . . . 4 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↔ 〈𝑗, 𝑘〉 ∈ 𝐴) |
10 | df-ov 6693 | . . . . 5 ⊢ (𝑗𝐹𝑘) = (𝐹‘〈𝑗, 𝑘〉) | |
11 | gsum2d.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | 11 | ffvelrnda 6399 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝐹‘〈𝑗, 𝑘〉) ∈ 𝐵) |
13 | 10, 12 | syl5eqel 2734 | . . . 4 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵) |
14 | 9, 13 | sylan2b 491 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵) |
15 | eqid 2651 | . . 3 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) | |
16 | 14, 15 | fmptd 6425 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵) |
17 | gsum2d.w | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
18 | 17 | fsuppimpd 8323 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ∈ Fin) |
19 | rnfi 8290 | . . . 4 ⊢ ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝐹 supp 0 ) ∈ Fin) |
21 | 9 | biimpi 206 | . . . . . . 7 ⊢ (𝑘 ∈ (𝐴 “ {𝑗}) → 〈𝑗, 𝑘〉 ∈ 𝐴) |
22 | 7, 8 | opelrn 5389 | . . . . . . . 8 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 )) |
23 | 22 | con3i 150 | . . . . . . 7 ⊢ (¬ 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 )) |
24 | 21, 23 | anim12i 589 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) |
25 | eldif 3617 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 ))) | |
26 | eldif 3617 | . . . . . 6 ⊢ (〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (〈𝑗, 𝑘〉 ∈ 𝐴 ∧ ¬ 〈𝑗, 𝑘〉 ∈ (𝐹 supp 0 ))) | |
27 | 24, 25, 26 | 3imtr4i 281 | . . . . 5 ⊢ (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) |
28 | ssid 3657 | . . . . . . . 8 ⊢ (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ) | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
30 | fvex 6239 | . . . . . . . . 9 ⊢ (0g‘𝐺) ∈ V | |
31 | 2, 30 | eqeltri 2726 | . . . . . . . 8 ⊢ 0 ∈ V |
32 | 31 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
33 | 11, 29, 4, 32 | suppssr 7371 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘〈𝑗, 𝑘〉) = 0 ) |
34 | 10, 33 | syl5eq 2697 | . . . . 5 ⊢ ((𝜑 ∧ 〈𝑗, 𝑘〉 ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
35 | 27, 34 | sylan2 490 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 ) |
36 | 35, 6 | suppss2 7374 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) |
37 | ssfi 8221 | . . 3 ⊢ ((ran (𝐹 supp 0 ) ∈ Fin ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) | |
38 | 20, 36, 37 | syl2anc 694 | . 2 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin) |
39 | 1, 2, 3, 6, 16, 38 | gsumcl2 18361 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 〈cop 4216 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ran crn 5144 “ cima 5146 Rel wrel 5148 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 supp csupp 7340 Fincfn 7997 finSupp cfsupp 8316 Basecbs 15904 0gc0g 16147 Σg cgsu 16148 CMndccmn 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-0g 16149 df-gsum 16150 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-cntz 17796 df-cmn 18241 |
This theorem is referenced by: gsum2dlem2 18416 gsum2d 18417 |
Copyright terms: Public domain | W3C validator |