![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grusn | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
grusn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4330 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | grupr 9825 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → {𝐴, 𝐴} ∈ 𝑈) | |
3 | 2 | 3anidm23 1531 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴, 𝐴} ∈ 𝑈) |
4 | 1, 3 | syl5eqel 2854 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → {𝐴} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 {csn 4317 {cpr 4319 Univcgru 9818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-tr 4888 df-iota 5993 df-fv 6038 df-ov 6799 df-gru 9819 |
This theorem is referenced by: gruop 9833 |
Copyright terms: Public domain | W3C validator |