MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Structured version   Visualization version   GIF version

Theorem grur1a 9626
Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1a (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)

Proof of Theorem grur1a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6 𝐴 = (𝑈 ∩ On)
2 inss1 3825 . . . . . 6 (𝑈 ∩ On) ⊆ 𝑈
31, 2eqsstri 3627 . . . . 5 𝐴𝑈
4 sseq2 3619 . . . . 5 (𝑈 = ∅ → (𝐴𝑈𝐴 ⊆ ∅))
53, 4mpbii 223 . . . 4 (𝑈 = ∅ → 𝐴 ⊆ ∅)
6 ss0 3965 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
7 fveq2 6178 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
8 r10 8616 . . . . . 6 (𝑅1‘∅) = ∅
97, 8syl6eq 2670 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
10 0ss 3963 . . . . 5 ∅ ⊆ 𝑈
119, 10syl6eqss 3647 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
125, 6, 113syl 18 . . 3 (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
1312a1i 11 . 2 (𝑈 ∈ Univ → (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈))
141gruina 9625 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
15 inawina 9497 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
16 winaon 9495 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
17 winalim 9502 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
18 r1lim 8620 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
1916, 17, 18syl2anc 692 . . . . 5 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
2014, 15, 193syl 18 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
21 inss2 3826 . . . . . . . . . . . 12 (𝑈 ∩ On) ⊆ On
221, 21eqsstri 3627 . . . . . . . . . . 11 𝐴 ⊆ On
2322sseli 3591 . . . . . . . . . 10 (𝑥𝐴𝑥 ∈ On)
24 eleq1 2687 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
25 fveq2 6178 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
2625, 8syl6eq 2670 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
2726eleq1d 2684 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2824, 27imbi12d 334 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (∅ ∈ 𝐴 → ∅ ∈ 𝑈)))
29 eleq1 2687 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
30 fveq2 6178 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
3130eleq1d 2684 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
3229, 31imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈)))
33 eleq1 2687 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
34 fveq2 6178 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
3534eleq1d 2684 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
3633, 35imbi12d 334 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
373sseli 3591 . . . . . . . . . . . . 13 (∅ ∈ 𝐴 → ∅ ∈ 𝑈)
3837a1i 11 . . . . . . . . . . . 12 (𝑈 ∈ Univ → (∅ ∈ 𝐴 → ∅ ∈ 𝑈))
39 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → suc 𝑦𝐴)
40 elelsuc 5785 . . . . . . . . . . . . . . . . . 18 (suc 𝑦𝐴 → suc 𝑦 ∈ suc 𝐴)
413sseli 3591 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝐴 → suc 𝑦𝑈)
42 ne0i 3913 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝑈𝑈 ≠ ∅)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑦𝐴𝑈 ≠ ∅)
4414, 15, 163syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
4543, 44sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝐴 ∈ On)
46 eloni 5721 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
47 ordsucelsuc 7007 . . . . . . . . . . . . . . . . . . 19 (Ord 𝐴 → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4845, 46, 473syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4940, 48syl5ibr 236 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (suc 𝑦𝐴𝑦𝐴))
5039, 49mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝑦𝐴)
51 grupw 9602 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
5251ex 450 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ Univ → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
5352adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
54 r1suc 8618 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
5554eleq1d 2684 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
5655biimprcd 240 . . . . . . . . . . . . . . . . 17 (𝒫 (𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))
5753, 56syl6 35 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5850, 57embantd 59 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5958ex 450 . . . . . . . . . . . . . 14 (𝑈 ∈ Univ → (suc 𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6059com23 86 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6160com4r 94 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈))))
62 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
633sseli 3591 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴𝑥𝑈)
64 ne0i 3913 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑈𝑈 ≠ ∅)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝑈 ≠ ∅)
6665, 44sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝐴 ∈ On)
67 ontr1 5759 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
68 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
6967, 68syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7069expd 452 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑦𝑥 → (𝑥𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7170com3r 87 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 ∈ On → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7262, 66, 71sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7372imp 445 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ Univ ∧ 𝑥𝐴) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
7473ralimdva 2959 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
75 gruiun 9606 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈)
76753expia 1265 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7763, 76sylan2 491 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7874, 77syld 47 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
79 vex 3198 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
80 r1lim 8620 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8179, 80mpan 705 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8281eleq1d 2684 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝑅1𝑥) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
8382biimprd 238 . . . . . . . . . . . . . . 15 (Lim 𝑥 → ( 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 → (𝑅1𝑥) ∈ 𝑈))
8478, 83sylan9r 689 . . . . . . . . . . . . . 14 ((Lim 𝑥 ∧ (𝑈 ∈ Univ ∧ 𝑥𝐴)) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))
8584exp32 630 . . . . . . . . . . . . 13 (Lim 𝑥 → (𝑈 ∈ Univ → (𝑥𝐴 → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))))
8685com34 91 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑈 ∈ Univ → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈))))
8728, 32, 36, 38, 61, 86tfinds2 7048 . . . . . . . . . . 11 (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈)))
8887com3r 87 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈)))
8923, 88mpd 15 . . . . . . . . 9 (𝑥𝐴 → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈))
9089impcom 446 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ∈ 𝑈)
91 gruelss 9601 . . . . . . . 8 ((𝑈 ∈ Univ ∧ (𝑅1𝑥) ∈ 𝑈) → (𝑅1𝑥) ⊆ 𝑈)
9290, 91syldan 487 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ⊆ 𝑈)
9392ralrimiva 2963 . . . . . 6 (𝑈 ∈ Univ → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
94 iunss 4552 . . . . . 6 ( 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈 ↔ ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9593, 94sylibr 224 . . . . 5 (𝑈 ∈ Univ → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9695adantr 481 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9720, 96eqsstrd 3631 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) ⊆ 𝑈)
9897ex 450 . 2 (𝑈 ∈ Univ → (𝑈 ≠ ∅ → (𝑅1𝐴) ⊆ 𝑈))
9913, 98pm2.61dne 2877 1 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  Vcvv 3195  cin 3566  wss 3567  c0 3907  𝒫 cpw 4149   ciun 4511  Ord word 5710  Oncon0 5711  Lim wlim 5712  suc csuc 5713  cfv 5876  𝑅1cr1 8610  Inaccwcwina 9489  Inacccina 9490  Univcgru 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-ac2 9270
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-r1 8612  df-card 8750  df-cf 8752  df-ac 8924  df-wina 9491  df-ina 9492  df-gru 9598
This theorem is referenced by:  grur1  9627
  Copyright terms: Public domain W3C validator