Step | Hyp | Ref
| Expression |
1 | | n0 3964 |
. . . 4
⊢ (𝑈 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝑈) |
2 | | 0ss 4005 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝑥 |
3 | | gruss 9656 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈) |
4 | 2, 3 | mp3an3 1453 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝑈) |
5 | | 0elon 5816 |
. . . . . . . . 9
⊢ ∅
∈ On |
6 | | elin 3829 |
. . . . . . . . 9
⊢ (∅
∈ (𝑈 ∩ On) ↔
(∅ ∈ 𝑈 ∧
∅ ∈ On)) |
7 | 4, 5, 6 | sylanblrc 698 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ (𝑈 ∩ On)) |
8 | | gruina.1 |
. . . . . . . 8
⊢ 𝐴 = (𝑈 ∩ On) |
9 | 7, 8 | syl6eleqr 2741 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → ∅ ∈ 𝐴) |
10 | | ne0i 3954 |
. . . . . . 7
⊢ (∅
∈ 𝐴 → 𝐴 ≠ ∅) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ≠ ∅) |
12 | 11 | expcom 450 |
. . . . 5
⊢ (𝑥 ∈ 𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
13 | 12 | exlimiv 1898 |
. . . 4
⊢
(∃𝑥 𝑥 ∈ 𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
14 | 1, 13 | sylbi 207 |
. . 3
⊢ (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅)) |
15 | 14 | impcom 445 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅) |
16 | | grutr 9653 |
. . . . . . . 8
⊢ (𝑈 ∈ Univ → Tr 𝑈) |
17 | | tron 5784 |
. . . . . . . 8
⊢ Tr
On |
18 | | trin 4796 |
. . . . . . . 8
⊢ ((Tr
𝑈 ∧ Tr On) → Tr
(𝑈 ∩
On)) |
19 | 16, 17, 18 | sylancl 695 |
. . . . . . 7
⊢ (𝑈 ∈ Univ → Tr (𝑈 ∩ On)) |
20 | | inss2 3867 |
. . . . . . . 8
⊢ (𝑈 ∩ On) ⊆
On |
21 | | epweon 7025 |
. . . . . . . 8
⊢ E We
On |
22 | | wess 5130 |
. . . . . . . 8
⊢ ((𝑈 ∩ On) ⊆ On → ( E
We On → E We (𝑈 ∩
On))) |
23 | 20, 21, 22 | mp2 9 |
. . . . . . 7
⊢ E We
(𝑈 ∩
On) |
24 | | df-ord 5764 |
. . . . . . 7
⊢ (Ord
(𝑈 ∩ On) ↔ (Tr
(𝑈 ∩ On) ∧ E We
(𝑈 ∩
On))) |
25 | 19, 23, 24 | sylanblrc 698 |
. . . . . 6
⊢ (𝑈 ∈ Univ → Ord (𝑈 ∩ On)) |
26 | | inex1g 4834 |
. . . . . 6
⊢ (𝑈 ∈ Univ → (𝑈 ∩ On) ∈
V) |
27 | | elon2 5772 |
. . . . . 6
⊢ ((𝑈 ∩ On) ∈ On ↔ (Ord
(𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈
V)) |
28 | 25, 26, 27 | sylanbrc 699 |
. . . . 5
⊢ (𝑈 ∈ Univ → (𝑈 ∩ On) ∈
On) |
29 | 8, 28 | syl5eqel 2734 |
. . . 4
⊢ (𝑈 ∈ Univ → 𝐴 ∈ On) |
30 | 29 | adantr 480 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On) |
31 | | eloni 5771 |
. . . . . . 7
⊢ (𝐴 ∈ On → Ord 𝐴) |
32 | | ordirr 5779 |
. . . . . . 7
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
34 | | elin 3829 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On)) |
35 | 34 | biimpri 218 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On)) |
36 | 35, 8 | syl6eleqr 2741 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On) → 𝐴 ∈ 𝐴) |
37 | 36 | expcom 450 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 ∈ 𝑈 → 𝐴 ∈ 𝐴)) |
38 | 33, 37 | mtod 189 |
. . . . 5
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝑈) |
39 | 30, 38 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬
𝐴 ∈ 𝑈) |
40 | | inss1 3866 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∩ On) ⊆ 𝑈 |
41 | 8, 40 | eqsstri 3668 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ⊆ 𝑈 |
42 | 41 | sseli 3632 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈) |
43 | | vpwex 4879 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
𝑥 ∈ V |
44 | 43 | canth2 8154 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
𝑥 ≺ 𝒫
𝒫 𝑥 |
45 | 43 | pwex 4878 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝒫
𝒫 𝑥 ∈
V |
46 | 45 | cardid 9407 |
. . . . . . . . . . . . . . . . 17
⊢
(card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 |
47 | 46 | ensymi 8047 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
𝒫 𝑥 ≈
(card‘𝒫 𝒫 𝑥) |
48 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
49 | | grupw 9655 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ∈ 𝑈) |
50 | | grupw 9655 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ∈ 𝑈) |
51 | 49, 50 | syldan 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ∈ 𝑈) |
52 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → 𝐴 ∈ On) |
53 | | endom 8024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫
𝒫 𝑥) ≼
𝒫 𝒫 𝑥) |
54 | 46, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥 |
55 | | cardon 8808 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(card‘𝒫 𝒫 𝑥) ∈ On |
56 | | grudomon 9677 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑈 ∈ Univ ∧
(card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥 ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫
𝑥)) →
(card‘𝒫 𝒫 𝑥) ∈ 𝑈) |
57 | 55, 56 | mp3an2 1452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑈 ∈ Univ ∧ (𝒫
𝒫 𝑥 ∈ 𝑈 ∧ (card‘𝒫
𝒫 𝑥) ≼
𝒫 𝒫 𝑥))
→ (card‘𝒫 𝒫 𝑥) ∈ 𝑈) |
58 | 54, 57 | mpanr2 720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ∈ 𝑈) |
59 | | elin 3829 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫
𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫
𝒫 𝑥) ∈
On)) |
60 | 59 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) →
(card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On)) |
61 | 60, 8 | syl6eleqr 2741 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) →
(card‘𝒫 𝒫 𝑥) ∈ 𝐴) |
62 | 58, 55, 61 | sylancl 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ∈ 𝐴) |
63 | | onelss 5804 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On →
((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫
𝑥) ⊆ 𝐴)) |
64 | 52, 62, 63 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝒫
𝒫 𝑥 ∈ 𝑈) → (card‘𝒫
𝒫 𝑥) ⊆ 𝐴) |
65 | 51, 64 | syldan 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (card‘𝒫 𝒫
𝑥) ⊆ 𝐴) |
66 | | ssdomg 8043 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On →
((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫
𝑥) ≼ 𝐴)) |
67 | 48, 65, 66 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (card‘𝒫 𝒫
𝑥) ≼ 𝐴) |
68 | | endomtr 8055 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫
𝑥) ∧
(card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥 ≼ 𝐴) |
69 | 47, 67, 68 | sylancr 696 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝒫 𝑥 ≼ 𝐴) |
70 | | sdomdomtr 8134 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑥
≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ 𝐴) → 𝒫 𝑥 ≺ 𝐴) |
71 | 44, 69, 70 | sylancr 696 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → 𝒫 𝑥 ≺ 𝐴) |
72 | 42, 71 | sylan2 490 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝒫 𝑥 ≺ 𝐴) |
73 | 72 | ralrimiva 2995 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) |
74 | | inawinalem 9549 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
75 | 29, 73, 74 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) |
77 | | winainflem 9553 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → ω ⊆ 𝐴) |
78 | 15, 30, 76, 77 | syl3anc 1366 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω
⊆ 𝐴) |
79 | | vex 3234 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
80 | 79 | canth2 8154 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ≺ 𝒫 𝑥 |
81 | | sdomtr 8139 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴) → 𝑥 ≺ 𝐴) |
82 | 80, 72, 81 | sylancr 696 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝑥 ≺ 𝐴) |
83 | 82 | ralrimiva 2995 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) |
84 | | iscard 8839 |
. . . . . . . . . . . 12
⊢
((card‘𝐴) =
𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
85 | 29, 83, 84 | sylanbrc 699 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ Univ →
(card‘𝐴) = 𝐴) |
86 | | cardlim 8836 |
. . . . . . . . . . . 12
⊢ (ω
⊆ (card‘𝐴)
↔ Lim (card‘𝐴)) |
87 | | sseq2 3660 |
. . . . . . . . . . . . 13
⊢
((card‘𝐴) =
𝐴 → (ω ⊆
(card‘𝐴) ↔
ω ⊆ 𝐴)) |
88 | | limeq 5773 |
. . . . . . . . . . . . 13
⊢
((card‘𝐴) =
𝐴 → (Lim
(card‘𝐴) ↔ Lim
𝐴)) |
89 | 87, 88 | bibi12d 334 |
. . . . . . . . . . . 12
⊢
((card‘𝐴) =
𝐴 → ((ω ⊆
(card‘𝐴) ↔ Lim
(card‘𝐴)) ↔
(ω ⊆ 𝐴 ↔
Lim 𝐴))) |
90 | 86, 89 | mpbii 223 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → (ω ⊆
𝐴 ↔ Lim 𝐴)) |
91 | 85, 90 | syl 17 |
. . . . . . . . . 10
⊢ (𝑈 ∈ Univ → (ω
⊆ 𝐴 ↔ Lim 𝐴)) |
92 | 91 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω
⊆ 𝐴 ↔ Lim 𝐴)) |
93 | 78, 92 | mpbid 222 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴) |
94 | | cflm 9110 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
95 | 30, 93, 94 | syl2anc 694 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
96 | | cardon 8808 |
. . . . . . . . . . . 12
⊢
(card‘𝑦)
∈ On |
97 | | eleq1 2718 |
. . . . . . . . . . . 12
⊢ (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On)) |
98 | 96, 97 | mpbiri 248 |
. . . . . . . . . . 11
⊢ (𝑥 = (card‘𝑦) → 𝑥 ∈ On) |
99 | 98 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → 𝑥 ∈ On) |
100 | 99 | exlimiv 1898 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → 𝑥 ∈ On) |
101 | 100 | abssi 3710 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ On |
102 | | fvex 6239 |
. . . . . . . . . 10
⊢
(cf‘𝐴) ∈
V |
103 | 95, 102 | syl6eqelr 2739 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ V) |
104 | | intex 4850 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠ ∅ ↔ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ V) |
105 | 103, 104 | sylibr 224 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠
∅) |
106 | | onint 7037 |
. . . . . . . 8
⊢ (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
107 | 101, 105,
106 | sylancr 696 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
108 | 95, 107 | eqeltrd 2730 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
109 | | eqeq1 2655 |
. . . . . . . . 9
⊢ (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦))) |
110 | 109 | anbi1d 741 |
. . . . . . . 8
⊢ (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
111 | 110 | exbidv 1890 |
. . . . . . 7
⊢ (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
112 | 102, 111 | elab 3382 |
. . . . . 6
⊢
((cf‘𝐴) ∈
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))) |
113 | 108, 112 | sylib 208 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))) |
114 | | simp2rr 1151 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = ∪ 𝑦) |
115 | | simp1l 1105 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ) |
116 | | simp2rl 1150 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ⊆ 𝐴) |
117 | 116, 41 | syl6ss 3648 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ⊆ 𝑈) |
118 | 41 | sseli 3632 |
. . . . . . . . . . 11
⊢
((cf‘𝐴) ∈
𝐴 → (cf‘𝐴) ∈ 𝑈) |
119 | 118 | 3ad2ant3 1104 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈) |
120 | | simp2l 1107 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦)) |
121 | | vex 3234 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
122 | 121 | cardid 9407 |
. . . . . . . . . . 11
⊢
(card‘𝑦)
≈ 𝑦 |
123 | 120, 122 | syl6eqbr 4724 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦) |
124 | | gruen 9672 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ⊆ 𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦 ∈ 𝑈) |
125 | 115, 117,
119, 123, 124 | syl112anc 1370 |
. . . . . . . . 9
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦 ∈ 𝑈) |
126 | | gruuni 9660 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈) → ∪ 𝑦 ∈ 𝑈) |
127 | 115, 125,
126 | syl2anc 694 |
. . . . . . . 8
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → ∪ 𝑦 ∈ 𝑈) |
128 | 114, 127 | eqeltrd 2730 |
. . . . . . 7
⊢ (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧
((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 ∈ 𝑈) |
129 | 128 | 3exp 1283 |
. . . . . 6
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(((cf‘𝐴) =
(card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → ((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈))) |
130 | 129 | exlimdv 1901 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → ((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈))) |
131 | 113, 130 | mpd 15 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
((cf‘𝐴) ∈ 𝐴 → 𝐴 ∈ 𝑈)) |
132 | 39, 131 | mtod 189 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬
(cf‘𝐴) ∈ 𝐴) |
133 | | cfon 9115 |
. . . . 5
⊢
(cf‘𝐴) ∈
On |
134 | | cfle 9114 |
. . . . . 6
⊢
(cf‘𝐴) ⊆
𝐴 |
135 | | onsseleq 5803 |
. . . . . 6
⊢
(((cf‘𝐴)
∈ On ∧ 𝐴 ∈
On) → ((cf‘𝐴)
⊆ 𝐴 ↔
((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))) |
136 | 134, 135 | mpbii 223 |
. . . . 5
⊢
(((cf‘𝐴)
∈ On ∧ 𝐴 ∈
On) → ((cf‘𝐴)
∈ 𝐴 ∨
(cf‘𝐴) = 𝐴)) |
137 | 133, 136 | mpan 706 |
. . . 4
⊢ (𝐴 ∈ On →
((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)) |
138 | 137 | ord 391 |
. . 3
⊢ (𝐴 ∈ On → (¬
(cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴)) |
139 | 30, 132, 138 | sylc 65 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(cf‘𝐴) = 𝐴) |
140 | 73 | adantr 480 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) |
141 | | elina 9547 |
. 2
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
142 | 15, 139, 140, 141 | syl3anbrc 1265 |
1
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) |