Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruen Structured version   Visualization version   GIF version

Theorem gruen 9672
 Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruen ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)

Proof of Theorem gruen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bren 8006 . . . . 5 (𝐵𝐴 ↔ ∃𝑦 𝑦:𝐵1-1-onto𝐴)
2 f1ofo 6182 . . . . . . . . 9 (𝑦:𝐵1-1-onto𝐴𝑦:𝐵onto𝐴)
3 simp3l 1109 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝑦:𝐵onto𝐴)
4 forn 6156 . . . . . . . . . . . . 13 (𝑦:𝐵onto𝐴 → ran 𝑦 = 𝐴)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦 = 𝐴)
6 fof 6153 . . . . . . . . . . . . . 14 (𝑦:𝐵onto𝐴𝑦:𝐵𝐴)
7 fss 6094 . . . . . . . . . . . . . 14 ((𝑦:𝐵𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
86, 7sylan 487 . . . . . . . . . . . . 13 ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝑦:𝐵𝑈)
9 grurn 9661 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝐵𝑈𝑦:𝐵𝑈) → ran 𝑦𝑈)
108, 9syl3an3 1401 . . . . . . . . . . . 12 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → ran 𝑦𝑈)
115, 10eqeltrrd 2731 . . . . . . . . . . 11 ((𝑈 ∈ Univ ∧ 𝐵𝑈 ∧ (𝑦:𝐵onto𝐴𝐴𝑈)) → 𝐴𝑈)
12113expia 1286 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → ((𝑦:𝐵onto𝐴𝐴𝑈) → 𝐴𝑈))
1312expd 451 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵onto𝐴 → (𝐴𝑈𝐴𝑈)))
142, 13syl5 34 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1514exlimdv 1901 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴 → (𝐴𝑈𝐴𝑈)))
1615com3r 87 . . . . . 6 (𝐴𝑈 → ((𝑈 ∈ Univ ∧ 𝐵𝑈) → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
1716expdimp 452 . . . . 5 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (∃𝑦 𝑦:𝐵1-1-onto𝐴𝐴𝑈)))
181, 17syl7bi 245 . . . 4 ((𝐴𝑈𝑈 ∈ Univ) → (𝐵𝑈 → (𝐵𝐴𝐴𝑈)))
1918impd 446 . . 3 ((𝐴𝑈𝑈 ∈ Univ) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
2019ancoms 468 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → ((𝐵𝑈𝐵𝐴) → 𝐴𝑈))
21203impia 1280 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (𝐵𝑈𝐵𝐴)) → 𝐴𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685  ran crn 5144  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925   ≈ cen 7994  Univcgru 9650 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-en 7998  df-gru 9651 This theorem is referenced by:  grudomon  9677  gruina  9678
 Copyright terms: Public domain W3C validator