MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubsub4 Structured version   Visualization version   GIF version

Theorem grpsubsub4 17716
Description: Double group subtraction (subsub4 10516 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubsub4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 468 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 grpsubadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . . . . 8 = (-g𝐺)
42, 3grpsubcl 17703 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
543adant3r3 1199 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
6 simpr3 1237 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
7 grpsubadd.p . . . . . . 7 + = (+g𝐺)
82, 7, 3grpnpcan 17715 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
91, 5, 6, 8syl3anc 1476 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + 𝑍) = (𝑋 𝑌))
109oveq1d 6808 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = ((𝑋 𝑌) + 𝑌))
112, 3grpsubcl 17703 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
121, 5, 6, 11syl3anc 1476 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
13 simpr2 1235 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
142, 7grpass 17639 . . . . 5 ((𝐺 ∈ Grp ∧ (((𝑋 𝑌) 𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
151, 12, 6, 13, 14syl13anc 1478 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) 𝑍) + 𝑍) + 𝑌) = (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)))
162, 7, 3grpnpcan 17715 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
17163adant3r3 1199 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑌) = 𝑋)
1810, 15, 173eqtr3d 2813 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋)
19 simpr1 1233 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
202, 7grpcl 17638 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
211, 6, 13, 20syl3anc 1476 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 + 𝑌) ∈ 𝐵)
222, 7, 3grpsubadd 17711 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
231, 19, 21, 12, 22syl13anc 1478 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍) ↔ (((𝑋 𝑌) 𝑍) + (𝑍 + 𝑌)) = 𝑋))
2418, 23mpbird 247 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑍 + 𝑌)) = ((𝑋 𝑌) 𝑍))
2524eqcomd 2777 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Grpcgrp 17630  -gcsg 17632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635
This theorem is referenced by:  grppnpcan2  17717  grpnnncan2  17720  sylow3lem1  18249  subgdisj1  18311  pjthlem2  23428  ply1divex  24116
  Copyright terms: Public domain W3C validator