Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid1 Structured version   Visualization version   GIF version

Theorem grpsubid1 17707
 Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubid1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem grpsubid1
StepHypRef Expression
1 id 22 . . 3 (𝑋𝐵𝑋𝐵)
2 grpsubid.b . . . 4 𝐵 = (Base‘𝐺)
3 grpsubid.o . . . 4 0 = (0g𝐺)
42, 3grpidcl 17657 . . 3 (𝐺 ∈ Grp → 0𝐵)
5 eqid 2770 . . . 4 (+g𝐺) = (+g𝐺)
6 eqid 2770 . . . 4 (invg𝐺) = (invg𝐺)
7 grpsubid.m . . . 4 = (-g𝐺)
82, 5, 6, 7grpsubval 17672 . . 3 ((𝑋𝐵0𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
91, 4, 8syl2anr 576 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = (𝑋(+g𝐺)((invg𝐺)‘ 0 )))
103, 6grpinvid 17683 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
1110adantr 466 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq2d 6808 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)((invg𝐺)‘ 0 )) = (𝑋(+g𝐺) 0 ))
132, 5, 3grprid 17660 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺) 0 ) = 𝑋)
149, 12, 133eqtrd 2808 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  0gc0g 16307  Grpcgrp 17629  invgcminusg 17630  -gcsg 17631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634 This theorem is referenced by:  odmod  18171  sylow3lem1  18248  telgsums  18597  dprdfeq0  18628  chp0mat  20870  tsmsxplem1  22175  tngnm  22674  ply1divex  24115  ply1remlem  24141  qqhcn  30369  lcfrlem33  37378
 Copyright terms: Public domain W3C validator